Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

28-03-2021

Bandwidth Improvement of Stub Loaded Compact Ultra-Wideband Microstrip Patch Antenna for C/X-Band Applications

Authors: Ramesh Kumar Verma, D. K. Srivastava

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research paper, a square ultra-wideband microstrip antenna is designed on a compact ground of size 24 × 24  mm2 using low cost FR-4 substrate. Antenna patch is designed by successively loading four rectangular patch segments of different sizes (antenna-1 to 4) and a square shape stub on top of radiating patch (antenna-5). The radiating patch is optimized by parametric analysis of square shape stub. The impedance bandwidth (S11 < –10 dB) of proposed antenna for an optimized dimension of stub has been obtained 106.92% (8.11 GHz) in between frequency 3.53–11.64 GHz showing peak gain of 7.2 dB. The proposed antenna has good return loss of –42.56 dB at 9.51 GHz resonant frequency. Frequency band 3.53–11.64 GHz is appropriate for simultaneously used of WiMAX (3.25–3.85 GHz), C-band (4–8 GHz) and partial X-band (8–12 GHz). The proposed antenna design is excited by 50Ω microstrip line feed. IE3D simulation tool has been employed for the designing and simulation of proposed structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Balanis, C. A. (2005). Antenna Theory. New York: Analysis and Design. John Wiley & Sons. Balanis, C. A. (2005). Antenna Theory. New York: Analysis and Design. John Wiley & Sons.
2.
go back to reference Revision of Part 15 of the Communication’s Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission, ET-Docket FCC 02-48, 98-153, 2002. Revision of Part 15 of the Communication’s Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission, ET-Docket FCC 02-48, 98-153, 2002.
3.
go back to reference Wang, H. Y., & Lancaster, M. J. (1999). Aperture-coupled thin film superconducting meander antennas. IEEE Transaction on Antennas and Propagation, 47(5), 829–836.CrossRef Wang, H. Y., & Lancaster, M. J. (1999). Aperture-coupled thin film superconducting meander antennas. IEEE Transaction on Antennas and Propagation, 47(5), 829–836.CrossRef
4.
go back to reference Waterhouse, R. (2007). Printed Antennas for Wireless Communications. John Wiley & Sons Inc.CrossRef Waterhouse, R. (2007). Printed Antennas for Wireless Communications. John Wiley & Sons Inc.CrossRef
5.
go back to reference Alam, T., Faruque, M. R. I., Islam, M. T., & Samsuzzaman, M. (2015). Dual elliptical patch antenna design on low cost epoxy resin polymer substrate material. International Journal of Applied Electromagnetics and Mechanics, 49, 23–29.CrossRef Alam, T., Faruque, M. R. I., Islam, M. T., & Samsuzzaman, M. (2015). Dual elliptical patch antenna design on low cost epoxy resin polymer substrate material. International Journal of Applied Electromagnetics and Mechanics, 49, 23–29.CrossRef
6.
go back to reference Jeong, J., & Chung, J. (2019). Ultra wideband spherical self-complementary antenna with capacitive and inductive loadings. Journal of Electrical Engineering & Technology, 14, 833–838.CrossRef Jeong, J., & Chung, J. (2019). Ultra wideband spherical self-complementary antenna with capacitive and inductive loadings. Journal of Electrical Engineering & Technology, 14, 833–838.CrossRef
7.
go back to reference Shaalan, A. A., & Ramadan, M. I. (2010). Design of a compact hexagonal monopole antenna for ultra-wideband applications. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 958–968. Shaalan, A. A., & Ramadan, M. I. (2010). Design of a compact hexagonal monopole antenna for ultra-wideband applications. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 958–968.
8.
go back to reference Ge, L., & Luk, K. M. (2012). A wideband magneto–electric dipole antenna. IEEE Transaction on Antennas and Propagation, 60(11), 4987–4991.CrossRef Ge, L., & Luk, K. M. (2012). A wideband magneto–electric dipole antenna. IEEE Transaction on Antennas and Propagation, 60(11), 4987–4991.CrossRef
9.
go back to reference Sadat, S., Fardis, M., Geran, F. G., & Dadashzadeh, G. R. (2007). A compact microstrip square-ring slot antenna for UWB applications. Progress In Electromagnetics Research, 67, 173–179.CrossRef Sadat, S., Fardis, M., Geran, F. G., & Dadashzadeh, G. R. (2007). A compact microstrip square-ring slot antenna for UWB applications. Progress In Electromagnetics Research, 67, 173–179.CrossRef
10.
go back to reference Gao, S. S., Li, J., & Qiao, H. M. (2019). Compact band notched slot antenna for ultra-wideband (UWB) applications based on strong couplings slots. Journal of Electrical Engineering & Technology, 14, 2091–2095.CrossRef Gao, S. S., Li, J., & Qiao, H. M. (2019). Compact band notched slot antenna for ultra-wideband (UWB) applications based on strong couplings slots. Journal of Electrical Engineering & Technology, 14, 2091–2095.CrossRef
11.
go back to reference Dastranj, A., Imani, A., & Moghaddasi, M. N. (2008). Printed wide slot antenna for wideband applications. IEEE Transaction on Antennas and Propagation, 56(10), 3097–3102.CrossRef Dastranj, A., Imani, A., & Moghaddasi, M. N. (2008). Printed wide slot antenna for wideband applications. IEEE Transaction on Antennas and Propagation, 56(10), 3097–3102.CrossRef
12.
go back to reference Lin, S. Y., & Ke, B. J. (2009). Ultrawideband printed patch antenna in notch. Microwave and Optical Technology Letter, 51(9), 2080–2084.CrossRef Lin, S. Y., & Ke, B. J. (2009). Ultrawideband printed patch antenna in notch. Microwave and Optical Technology Letter, 51(9), 2080–2084.CrossRef
13.
go back to reference Sarkar, M., Dwari, S., & Daniel, A. (2015). Printed monopole antenna for ultra-wideband application with tunable triple band-notched characteristics. Wireless Personal Communication, 84(4), 2943–2954.CrossRef Sarkar, M., Dwari, S., & Daniel, A. (2015). Printed monopole antenna for ultra-wideband application with tunable triple band-notched characteristics. Wireless Personal Communication, 84(4), 2943–2954.CrossRef
14.
go back to reference Ayub, S., & Srivastava, S. (2016). Bandwidth enhancement by direct coupled antenna for WLAN/GPS/WiMax applications and feed point coordinate analysis through ANN. Wireless Personal Communication, 91(1), 9–32.CrossRef Ayub, S., & Srivastava, S. (2016). Bandwidth enhancement by direct coupled antenna for WLAN/GPS/WiMax applications and feed point coordinate analysis through ANN. Wireless Personal Communication, 91(1), 9–32.CrossRef
15.
go back to reference Malekpoor, H., & Jam, J. (2013). Design of an ultra-wideband microstrip patch antenna suspended by shorting pins. Wireless Personal Communication, 71, 3059–3068.CrossRef Malekpoor, H., & Jam, J. (2013). Design of an ultra-wideband microstrip patch antenna suspended by shorting pins. Wireless Personal Communication, 71, 3059–3068.CrossRef
16.
go back to reference Moghaddasi, M. N., Danideh, A., Sadeghifakhr, R., & Azadi, M. R. (2009). CPW-fed ultra wideband slot antenna with arc-shaped stub. IET Microwaves, Antennas & Propagation, 3(4), 681–686. Moghaddasi, M. N., Danideh, A., Sadeghifakhr, R., & Azadi, M. R. (2009). CPW-fed ultra wideband slot antenna with arc-shaped stub. IET Microwaves, Antennas & Propagation, 3(4), 681–686.
17.
go back to reference Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1247.CrossRef Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1247.CrossRef
18.
go back to reference George, N., & Lethakumary, B. (2015). A compact microstrip antenna for UWB applications. Microwave and Optical Technology Letters, 57(3), 621–624.CrossRef George, N., & Lethakumary, B. (2015). A compact microstrip antenna for UWB applications. Microwave and Optical Technology Letters, 57(3), 621–624.CrossRef
19.
go back to reference Sharma, P., Vaish, A., & Yaduvanshi, R. S. (2019). The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. Journal of Computational Electronices, 18, 1333–1341.CrossRef Sharma, P., Vaish, A., & Yaduvanshi, R. S. (2019). The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. Journal of Computational Electronices, 18, 1333–1341.CrossRef
20.
go back to reference Srivastava, D. K., Khanna, A., & Saini, J. P. (2015). Design of a wideband gap–coupled modified square fractal antenna. Journal of Computational Electronics, 15(1), 239–247.CrossRef Srivastava, D. K., Khanna, A., & Saini, J. P. (2015). Design of a wideband gap–coupled modified square fractal antenna. Journal of Computational Electronics, 15(1), 239–247.CrossRef
21.
go back to reference Gupta, A., Srivastava, D. K., Saini, J. P., & Verma, R. K. (2020). Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications. Journal of Computational electronics, 19(1), 457–468.CrossRef Gupta, A., Srivastava, D. K., Saini, J. P., & Verma, R. K. (2020). Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications. Journal of Computational electronics, 19(1), 457–468.CrossRef
22.
go back to reference Subbarao, A., & Raghavan, S. (2013). Compact coplanar waveguide-fed planar antenna for ultra-wideband and WLAN applications. Wireless Personal Communication, 71, 2849–2862.CrossRef Subbarao, A., & Raghavan, S. (2013). Compact coplanar waveguide-fed planar antenna for ultra-wideband and WLAN applications. Wireless Personal Communication, 71, 2849–2862.CrossRef
23.
go back to reference Verma, R. K., & Srivastava, D. K. (2019). Bandwidth enhancement of a slot loaded T-shape patch antenna. Journal of Computational Electronics, 18(1), 205–210.CrossRef Verma, R. K., & Srivastava, D. K. (2019). Bandwidth enhancement of a slot loaded T-shape patch antenna. Journal of Computational Electronics, 18(1), 205–210.CrossRef
24.
go back to reference Shakib, M. N., Moghavvemi, M., & Mahadi, W. N. L. (2015). A low-profile patch antenna for ultrawideband application. IEEE Antennas and Wireless Propagation Letters, 14, 1790–1793.CrossRef Shakib, M. N., Moghavvemi, M., & Mahadi, W. N. L. (2015). A low-profile patch antenna for ultrawideband application. IEEE Antennas and Wireless Propagation Letters, 14, 1790–1793.CrossRef
25.
go back to reference Khalily, M., Rahim, M. K. A., Kishk, A. A., & Danesh, S. (2013). Wideband P-shaped dielectric resonator antenna. Radioengineering, 22(1), 281–285. Khalily, M., Rahim, M. K. A., Kishk, A. A., & Danesh, S. (2013). Wideband P-shaped dielectric resonator antenna. Radioengineering, 22(1), 281–285.
26.
go back to reference Chen, D., & Cheng, C. H. (2009). A novel compact ultra-wideband (UWB) wide slot antenna with via holes. Progress In Electromagnetics Research, PIER, 94, 343–349.CrossRef Chen, D., & Cheng, C. H. (2009). A novel compact ultra-wideband (UWB) wide slot antenna with via holes. Progress In Electromagnetics Research, PIER, 94, 343–349.CrossRef
27.
go back to reference Solanki, S. S., Singh, S., & Singh, D. (2017). Modified wideband bowtie antenna for WLAN and high speed data communication applications. Wireless Personal Communication, 95, 2649–2663.CrossRef Solanki, S. S., Singh, S., & Singh, D. (2017). Modified wideband bowtie antenna for WLAN and high speed data communication applications. Wireless Personal Communication, 95, 2649–2663.CrossRef
29.
go back to reference Mandal, K., & Sarkar, P. P. (2013). High gain wide–band U–shaped patch antennas with modified ground planes. IEEE Transactions on Antennas and Propagation, 61(4), 2279–2282.CrossRef Mandal, K., & Sarkar, P. P. (2013). High gain wide–band U–shaped patch antennas with modified ground planes. IEEE Transactions on Antennas and Propagation, 61(4), 2279–2282.CrossRef
30.
go back to reference Yadav, A., Singh, V. K., & Mohan, H. (2019). Design of a U–shaped circularly polarized wearable antenna with DGS on a fabric substrate for WLAN and C–band applications. Journal of Computational Electronics, 18(3), 1103–1109.CrossRef Yadav, A., Singh, V. K., & Mohan, H. (2019). Design of a U–shaped circularly polarized wearable antenna with DGS on a fabric substrate for WLAN and C–band applications. Journal of Computational Electronics, 18(3), 1103–1109.CrossRef
31.
go back to reference Rawat, S., & Sharma, K. K. (2014). A compact broadband microstrip patch antenna with defected ground structure for C–band applications. Central European Journal of Engineering, 4(3), 287–292. Rawat, S., & Sharma, K. K. (2014). A compact broadband microstrip patch antenna with defected ground structure for C–band applications. Central European Journal of Engineering, 4(3), 287–292.
33.
go back to reference IE3D Electromagnetic Simulation and Optimization Package, Version 9.0. IE3D Electromagnetic Simulation and Optimization Package, Version 9.0.
34.
go back to reference Verma, R. K., & Srivastava, D. K. (2020). Design and analysis of triple-band rectangular microstrip antenna loaded with notches and slots for wireless applications. Wireless Personal Communications, 114, 1847–1864.CrossRef Verma, R. K., & Srivastava, D. K. (2020). Design and analysis of triple-band rectangular microstrip antenna loaded with notches and slots for wireless applications. Wireless Personal Communications, 114, 1847–1864.CrossRef
35.
go back to reference Levis, C. A. (1999). Friis Free-Space Transmission Formula. In Wiley Encyclopedia of Electrical and Electronics Engineering: John Wiley & Sons Inc. Levis, C. A. (1999). Friis Free-Space Transmission Formula. In Wiley Encyclopedia of Electrical and Electronics Engineering: John Wiley & Sons Inc.
Metadata
Title
Bandwidth Improvement of Stub Loaded Compact Ultra-Wideband Microstrip Patch Antenna for C/X-Band Applications
Authors
Ramesh Kumar Verma
D. K. Srivastava
Publication date
28-03-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08441-z

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue