Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2013

01-08-2013

Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current

Authors: Jason C. Wester, Diego Contreras

Published in: Journal of Computational Neuroscience | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spike threshold filters incoming inputs and thus gates activity flow through neuronal networks. Threshold is variable, and in many types of neurons there is a relationship between the threshold voltage and the rate of rise of the membrane potential (dVm/dt) leading to the spike. In primary sensory cortex this relationship enhances the sensitivity of neurons to a particular stimulus feature. While Na+ channel inactivation may contribute to this relationship, recent evidence indicates that K+ currents located in the spike initiation zone are crucial. Here we used a simple Hodgkin-Huxley biophysical model to systematically investigate the role of K+ and Na+ current parameters (activation voltages and kinetics) in regulating spike threshold as a function of dVm/dt. Threshold was determined empirically and not estimated from the shape of the Vm prior to a spike. This allowed us to investigate intrinsic currents and values of gating variables at the precise voltage threshold. We found that Na+ inactivation is sufficient to produce the relationship provided it occurs at hyperpolarized voltages combined with slow kinetics. Alternatively, hyperpolarization of the K+ current activation voltage, even in the absence of Na+ inactivation, is also sufficient to produce the relationship. This hyperpolarized shift of K+ activation allows an outward current prior to spike initiation to antagonize the Na+ inward current such that it becomes self-sustaining at a more depolarized voltage. Our simulations demonstrate parameter constraints on Na+ inactivation and the biophysical mechanism by which an outward current regulates spike threshold as a function of dVm/dt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 8110–8115.PubMedCrossRef Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 8110–8115.PubMedCrossRef
go back to reference Azouz, R., & Gray, C. M. (2003). Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron, 37, 513–523.PubMedCrossRef Azouz, R., & Gray, C. M. (2003). Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron, 37, 513–523.PubMedCrossRef
go back to reference Bekkers, J. M., & Delaney, A. J. (2001). Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. Journal of Neuroscience, 21, 6553–6560.PubMed Bekkers, J. M., & Delaney, A. J. (2001). Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. Journal of Neuroscience, 21, 6553–6560.PubMed
go back to reference Bender, K. J., & Trussell, L. O. (2012). The physiology of the axon initial segment. Annual Review of Neuroscience, 35, 249–265. Bender, K. J., & Trussell, L. O. (2012). The physiology of the axon initial segment. Annual Review of Neuroscience, 35, 249–265.
go back to reference Brown, D. A., & Adams, P. R. (1980). Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature, 283, 673–676.PubMedCrossRef Brown, D. A., & Adams, P. R. (1980). Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature, 283, 673–676.PubMedCrossRef
go back to reference Brown, D. A., & Passmore, G. M. (2009). Neural KCNQ (Kv7) channels. British Journal of Pharmacology, 156, 1185–1195.PubMedCrossRef Brown, D. A., & Passmore, G. M. (2009). Neural KCNQ (Kv7) channels. British Journal of Pharmacology, 156, 1185–1195.PubMedCrossRef
go back to reference Bryant, H. L., & Segundo, J. P. (1976). Spike initiation by transmembrane current: a white-noise analysis. Journal of Physiology, 260, 279–314.PubMed Bryant, H. L., & Segundo, J. P. (1976). Spike initiation by transmembrane current: a white-noise analysis. Journal of Physiology, 260, 279–314.PubMed
go back to reference Cardin, J. A., Kumbhani, R. D., Contreras, D., & Palmer, L. A. (2010). Cellular mechanisms of temporal sensitivity in visual cortex neurons. Journal of Neuroscience, 30, 3652–3662.PubMedCrossRef Cardin, J. A., Kumbhani, R. D., Contreras, D., & Palmer, L. A. (2010). Cellular mechanisms of temporal sensitivity in visual cortex neurons. Journal of Neuroscience, 30, 3652–3662.PubMedCrossRef
go back to reference Colbert, C. M., & Pan, E. (2002). Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature Neuroscience, 5, 533–538.PubMedCrossRef Colbert, C. M., & Pan, E. (2002). Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature Neuroscience, 5, 533–538.PubMedCrossRef
go back to reference Contreras, D., Destexhe, A., & Steriade, M. (1997). Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. Journal of Neurophysiology, 78, 335–350.PubMed Contreras, D., Destexhe, A., & Steriade, M. (1997). Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. Journal of Neurophysiology, 78, 335–350.PubMed
go back to reference Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91, 555–602.PubMedCrossRef Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91, 555–602.PubMedCrossRef
go back to reference Destexhe, A., & Pare, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed Destexhe, A., & Pare, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed
go back to reference Destexhe, A., & Sejnowski, T. J. (2001). Thalamocortical assemblies: How ion channels, single neurons, and large-scale networks organize sleep oscillations. Oxford University Press, New York. Destexhe, A., & Sejnowski, T. J. (2001). Thalamocortical assemblies: How ion channels, single neurons, and large-scale networks organize sleep oscillations. Oxford University Press, New York.
go back to reference Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.PubMedCrossRef Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.PubMedCrossRef
go back to reference Dodson, P. D., Barker, M. C., & Forsythe, I. D. (2002). Two heteromeric Kv1 potassium channels differentially regulate action potential firing. Journal of Neuroscience, 22, 6953–6961.PubMed Dodson, P. D., Barker, M. C., & Forsythe, I. D. (2002). Two heteromeric Kv1 potassium channels differentially regulate action potential firing. Journal of Neuroscience, 22, 6953–6961.PubMed
go back to reference Ferragamo, M. J., & Oertel, D. (2002). Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. Journal of Neurophysiology, 87, 2262–2270.PubMed Ferragamo, M. J., & Oertel, D. (2002). Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. Journal of Neurophysiology, 87, 2262–2270.PubMed
go back to reference Foust, A., Popovic, M., Zecevic, D., & McCormick, D. A. (2010). Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. Journal of Neuroscience, 30, 6891–6902.PubMedCrossRef Foust, A., Popovic, M., Zecevic, D., & McCormick, D. A. (2010). Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. Journal of Neuroscience, 30, 6891–6902.PubMedCrossRef
go back to reference Goldberg, E. M., Clark, B. D., Zagha, E., Nahmani, M., Erisir, A., & Rudy, B. (2008). K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron, 58, 387–400.PubMedCrossRef Goldberg, E. M., Clark, B. D., Zagha, E., Nahmani, M., Erisir, A., & Rudy, B. (2008). K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron, 58, 387–400.PubMedCrossRef
go back to reference Guan, D., Lee, J. C., Tkatch, T., Surmeier, D. J., Armstrong, W. E., & Foehring, R. C. (2006). Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. The Journal of Physiology, 571, 371–389.PubMedCrossRef Guan, D., Lee, J. C., Tkatch, T., Surmeier, D. J., Armstrong, W. E., & Foehring, R. C. (2006). Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. The Journal of Physiology, 571, 371–389.PubMedCrossRef
go back to reference Guan, D., Lee, J. C., Higgs, M. H., Spain, W. J., & Foehring, R. C. (2007). Functional roles of Kv1 channels in neocortical pyramidal neurons. Journal of Neurophysiology, 97, 1931–1940.PubMedCrossRef Guan, D., Lee, J. C., Higgs, M. H., Spain, W. J., & Foehring, R. C. (2007). Functional roles of Kv1 channels in neocortical pyramidal neurons. Journal of Neurophysiology, 97, 1931–1940.PubMedCrossRef
go back to reference Harvey, A. L., & Robertson, B. (2004). Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Current Medicinal Chemistry, 11, 3065–3072.PubMedCrossRef Harvey, A. L., & Robertson, B. (2004). Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Current Medicinal Chemistry, 11, 3065–3072.PubMedCrossRef
go back to reference Henze, D. A., & Buzsaki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105, 121–130.PubMedCrossRef Henze, D. A., & Buzsaki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105, 121–130.PubMedCrossRef
go back to reference Higgs, M. H., & Spain, W. J. (2011). Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. Journal of Physiology, 589, 5125–5142. Higgs, M. H., & Spain, W. J. (2011). Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones. Journal of Physiology, 589, 5125–5142.
go back to reference Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed
go back to reference Hu, W., Tian, C., Li, T., Yang, M., Hou, H., & Shu, Y. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nature Neuroscience, 12, 996–1002.PubMedCrossRef Hu, W., Tian, C., Li, T., Yang, M., Hou, H., & Shu, Y. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nature Neuroscience, 12, 996–1002.PubMedCrossRef
go back to reference Inda, M. C., DeFelipe, J., & Munoz, A. (2006). Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 2920–2925.PubMedCrossRef Inda, M. C., DeFelipe, J., & Munoz, A. (2006). Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 2920–2925.PubMedCrossRef
go back to reference Kole, M. H., & Stuart, G. J. (2012). Signal processing in the axon initial segment. Neuron, 73, 235–247.PubMedCrossRef Kole, M. H., & Stuart, G. J. (2012). Signal processing in the axon initial segment. Neuron, 73, 235–247.PubMedCrossRef
go back to reference Kole, M. H., Letzkus, J. J., & Stuart, G. J. (2007). Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55, 633–647.PubMedCrossRef Kole, M. H., Letzkus, J. J., & Stuart, G. J. (2007). Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55, 633–647.PubMedCrossRef
go back to reference Kole, M. H., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11, 178–186.PubMedCrossRef Kole, M. H., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11, 178–186.PubMedCrossRef
go back to reference Lorincz, A., & Nusser, Z. (2008). Cell-type-dependent molecular composition of the axon initial segment. Journal of Neuroscience, 28, 14329–14340.PubMedCrossRef Lorincz, A., & Nusser, Z. (2008). Cell-type-dependent molecular composition of the axon initial segment. Journal of Neuroscience, 28, 14329–14340.PubMedCrossRef
go back to reference Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15, 1427–1439.PubMedCrossRef Mainen, Z. F., Joerges, J., Huguenard, J. R., & Sejnowski, T. J. (1995). A model of spike initiation in neocortical pyramidal neurons. Neuron, 15, 1427–1439.PubMedCrossRef
go back to reference McCormick, D. A., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and Huxley model—still standing? Nature, 445, E1–E2. discussion E2-3.PubMedCrossRef McCormick, D. A., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and Huxley model—still standing? Nature, 445, E1–E2. discussion E2-3.PubMedCrossRef
go back to reference Miller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits. Journal of Neuroscience, 28, 13716–13726.PubMedCrossRef Miller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits. Journal of Neuroscience, 28, 13716–13726.PubMedCrossRef
go back to reference Noble, D. (1966). Applications of Hodgkin-Huxley equations to excitable tissues. Physiological Reviews, 46, 1–50.PubMed Noble, D. (1966). Applications of Hodgkin-Huxley equations to excitable tissues. Physiological Reviews, 46, 1–50.PubMed
go back to reference Noble, D., & Stein, R. B. (1966). The threshold conditions for initiation of action potentials by excitable cells. The Journal of Physiology, 187, 129–162.PubMed Noble, D., & Stein, R. B. (1966). The threshold conditions for initiation of action potentials by excitable cells. The Journal of Physiology, 187, 129–162.PubMed
go back to reference Palmer, L. M., & Stuart, G. J. (2006). Site of action potential initiation in layer 5 pyramidal neurons. Journal of Neuroscience, 26, 1854–1863.PubMedCrossRef Palmer, L. M., & Stuart, G. J. (2006). Site of action potential initiation in layer 5 pyramidal neurons. Journal of Neuroscience, 26, 1854–1863.PubMedCrossRef
go back to reference Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Fregnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99, 427–441.PubMedCrossRef Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Fregnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99, 427–441.PubMedCrossRef
go back to reference Schlue, W. R., Richter, D. W., Mauritz, K. H., & Nacimiento, A. C. (1974). Responses of cat spinal motoneuron somata and axons to linearly rising currents. Journal of Neurophysiology, 37, 303–309.PubMed Schlue, W. R., Richter, D. W., Mauritz, K. H., & Nacimiento, A. C. (1974). Responses of cat spinal motoneuron somata and axons to linearly rising currents. Journal of Neurophysiology, 37, 303–309.PubMed
go back to reference Shen, W., Hernandez-Lopez, S., Tkatch, T., Held, J. E., & Surmeier, D. J. (2004). Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. Journal of Neurophysiology, 91, 1337–1349.PubMedCrossRef Shen, W., Hernandez-Lopez, S., Tkatch, T., Held, J. E., & Surmeier, D. J. (2004). Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. Journal of Neurophysiology, 91, 1337–1349.PubMedCrossRef
go back to reference Shu, Y., Yu, Y., Yang, J., & McCormick, D. A. (2007a). Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proceedings of the National Academy of Sciences of the United States of America, 104, 11453–11458.PubMedCrossRef Shu, Y., Yu, Y., Yang, J., & McCormick, D. A. (2007a). Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proceedings of the National Academy of Sciences of the United States of America, 104, 11453–11458.PubMedCrossRef
go back to reference Shu, Y., Duque, A., Yu, Y., Haider, B., & McCormick, D. A. (2007b). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. Journal of Neurophysiology, 97, 746–760.PubMedCrossRef Shu, Y., Duque, A., Yu, Y., Haider, B., & McCormick, D. A. (2007b). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. Journal of Neurophysiology, 97, 746–760.PubMedCrossRef
go back to reference Storm, J. F. (1988). Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature, 336, 379–381.PubMedCrossRef Storm, J. F. (1988). Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature, 336, 379–381.PubMedCrossRef
go back to reference Stuart, G., Schiller, J., & Sakmann, B. (1997). Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of Physiology, 505(Pt 3), 617–632.PubMedCrossRef Stuart, G., Schiller, J., & Sakmann, B. (1997). Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of Physiology, 505(Pt 3), 617–632.PubMedCrossRef
go back to reference Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge University Press, Cambridge. Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge University Press, Cambridge.
go back to reference Van Wart, A., Trimmer, J. S., & Matthews, G. (2007). Polarized distribution of ion channels within microdomains of the axon initial segment. The Journal of Comparative Neurology, 500, 339–352.PubMedCrossRef Van Wart, A., Trimmer, J. S., & Matthews, G. (2007). Polarized distribution of ion channels within microdomains of the axon initial segment. The Journal of Comparative Neurology, 500, 339–352.PubMedCrossRef
go back to reference Wilent, W. B., & Contreras, D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. Journal of Neuroscience, 25, 2983–2991.PubMedCrossRef Wilent, W. B., & Contreras, D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. Journal of Neuroscience, 25, 2983–2991.PubMedCrossRef
go back to reference Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. Journal of Neuroscience, 28, 7260–7272.PubMedCrossRef Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. Journal of Neuroscience, 28, 7260–7272.PubMedCrossRef
Metadata
Title
Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current
Authors
Jason C. Wester
Diego Contreras
Publication date
01-08-2013
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2013
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0436-2

Other articles of this Issue 1/2013

Journal of Computational Neuroscience 1/2013 Go to the issue

Premium Partner