Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2013

01-08-2013

The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability

Authors: Steven Reich, Robert Rosenbaum

Published in: Journal of Computational Neuroscience | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220–224.PubMedCrossRef Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220–224.PubMedCrossRef
go back to reference Baddeley, R., Abbott, L., Booth, M., Sengpiel, F., Freeman, T., Wakeman, E., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society of London Series B: Biological Sciences, 264(1389), 1775–1783.PubMedCrossRef Baddeley, R., Abbott, L., Booth, M., Sengpiel, F., Freeman, T., Wakeman, E., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society of London Series B: Biological Sciences, 264(1389), 1775–1783.PubMedCrossRef
go back to reference Bair, W., Koch, C., Newsome, W., Britten, K. (1994). Power spectrum analysis of bursting cells in area mt in the behaving monkey. The Journal of Neuroscience, 14(5), 2870–2892.PubMed Bair, W., Koch, C., Newsome, W., Britten, K. (1994). Power spectrum analysis of bursting cells in area mt in the behaving monkey. The Journal of Neuroscience, 14(5), 2870–2892.PubMed
go back to reference Barbieri, F., & Brunel, N. (2008). Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Front in Neuroscience, 2(1), 114.CrossRef Barbieri, F., & Brunel, N. (2008). Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Front in Neuroscience, 2(1), 114.CrossRef
go back to reference Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Reviews Neuroscience, 10(5), 373–383.PubMedCrossRef Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Reviews Neuroscience, 10(5), 373–383.PubMedCrossRef
go back to reference Britten, K., Shadlen, M., Newsome, W., Movshon, J. (1993). Responses of neurons in macaque mt to stochastic motion signals. Visual Neuroscience, 10, 1157–1157.PubMedCrossRef Britten, K., Shadlen, M., Newsome, W., Movshon, J. (1993). Responses of neurons in macaque mt to stochastic motion signals. Visual Neuroscience, 10, 1157–1157.PubMedCrossRef
go back to reference Buracas, G., Zador, A., DeWeese, M., Albright, T. (1998). Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 20(5), 959–969.PubMedCrossRef Buracas, G., Zador, A., DeWeese, M., Albright, T. (1998). Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 20(5), 959–969.PubMedCrossRef
go back to reference Chance, F., Nelson, S., Abbott, L. (1998). Synaptic depression and the temporal response characteristics of v1 cells. Journal of Neuroscience, 18(12), 4785.PubMed Chance, F., Nelson, S., Abbott, L. (1998). Synaptic depression and the temporal response characteristics of v1 cells. Journal of Neuroscience, 18(12), 4785.PubMed
go back to reference Churchland, M., Byron, M., Cunningham, J., Sugrue, L., Cohen, M., Corrado, G., et. al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCrossRef Churchland, M., Byron, M., Cunningham, J., Sugrue, L., Cohen, M., Corrado, G., et. al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCrossRef
go back to reference Cook, D.L., Schwindt, P.C., Grande, L.A., Spain, W.J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66–70.PubMedCrossRef Cook, D.L., Schwindt, P.C., Grande, L.A., Spain, W.J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66–70.PubMedCrossRef
go back to reference Cox, D. (1962). Renewal Theory. London: Methuen and Co. Cox, D. (1962). Renewal Theory. London: Methuen and Co.
go back to reference Cox, D., & Isham, V. (1980). Point processes. London: Chapman and Hall. Cox, D., & Isham, V. (1980). Point processes. London: Chapman and Hall.
go back to reference Dan, Y., Atick, J., Reid, R. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. The Journal of Neuroscience, 16(10), 3351–3362.PubMed Dan, Y., Atick, J., Reid, R. (1996). Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. The Journal of Neuroscience, 16(10), 3351–3362.PubMed
go back to reference Dayan, P., & Abbott, L. (2001). Theoretical Neurosci: Computational and mathematical modeling of neural systems. New York: Taylor & Francis. Dayan, P., & Abbott, L. (2001). Theoretical Neurosci: Computational and mathematical modeling of neural systems. New York: Taylor & Francis.
go back to reference de la Rocha, J., & Moreno, R. (2004). Correlations modulate the non-monotonic response of a neuron with short-term plasticity. Neurocomputing, 58, 313–319.CrossRef de la Rocha, J., & Moreno, R. (2004). Correlations modulate the non-monotonic response of a neuron with short-term plasticity. Neurocomputing, 58, 313–319.CrossRef
go back to reference de la Rocha, J., & Nevado, A. (2002). Information transmission by stochastic synapses with short-term depression: neural coding and optimization. Neurocomputing, 44, 85–90.CrossRef de la Rocha, J., & Nevado, A. (2002). Information transmission by stochastic synapses with short-term depression: neural coding and optimization. Neurocomputing, 44, 85–90.CrossRef
go back to reference de la Rocha, J., & Parga, N. (2005). Short-term synaptic depression causes a non-monotonic response to correlated stimuli. Journal of Neuroscience, 25(37), 8416–8431.PubMedCrossRef de la Rocha, J., & Parga, N. (2005). Short-term synaptic depression causes a non-monotonic response to correlated stimuli. Journal of Neuroscience, 25(37), 8416–8431.PubMedCrossRef
go back to reference de la Rocha, J., & Parga, N. (2008). Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa-barrel system. Journal of Computational Neuroscience, 25(1), 122–140.PubMedCrossRef de la Rocha, J., & Parga, N. (2008). Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa-barrel system. Journal of Computational Neuroscience, 25(1), 122–140.PubMedCrossRef
go back to reference Faisal, A., Selen, L., Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303.PubMedCrossRef Faisal, A., Selen, L., Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303.PubMedCrossRef
go back to reference Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M. (2002). Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology, 87(1), 140.PubMed Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M. (2002). Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology, 87(1), 140.PubMed
go back to reference Galarreta, M., & Hestrin, S. (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience, 1, 587–594.PubMedCrossRef Galarreta, M., & Hestrin, S. (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience, 1, 587–594.PubMedCrossRef
go back to reference Goldman, M. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural Computation, 16(6), 1137–1162.PubMedCrossRef Goldman, M. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural Computation, 16(6), 1137–1162.PubMedCrossRef
go back to reference Goldman, M., Nelson, S., Abbott, L. (1999). Decorrelation of spike trains by synaptic depression. Neurocomputing, 26, 147–153.CrossRef Goldman, M., Nelson, S., Abbott, L. (1999). Decorrelation of spike trains by synaptic depression. Neurocomputing, 26, 147–153.CrossRef
go back to reference Goldman, M., Maldonado, P., Abbott, L. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. The Journal of Neuroscience, 22(2), 584–591.PubMed Goldman, M., Maldonado, P., Abbott, L. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. The Journal of Neuroscience, 22(2), 584–591.PubMed
go back to reference Grande, L.A., & Spain, W.J. (2005). Synaptic depression as a timing device. Journal of Physiology, 20, 201–210.CrossRef Grande, L.A., & Spain, W.J. (2005). Synaptic depression as a timing device. Journal of Physiology, 20, 201–210.CrossRef
go back to reference Hanson, J.E., & Jaeger, D. (2002). Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. Journal of Neuroscience, 22(12), 5164–5172.PubMed Hanson, J.E., & Jaeger, D. (2002). Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. Journal of Neuroscience, 22(12), 5164–5172.PubMed
go back to reference Harsch, A., & Robinson, H. (2000). Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic nmda receptor conductance. The Journal of Neuroscience, 20(16), 6181–6192.PubMed Harsch, A., & Robinson, H. (2000). Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic nmda receptor conductance. The Journal of Neuroscience, 20(16), 6181–6192.PubMed
go back to reference Kara, P., Reinagel, P., Reid, R. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646.PubMedCrossRef Kara, P., Reinagel, P., Reid, R. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646.PubMedCrossRef
go back to reference Karlin, S., & Taylor, H. (1975). A first course in stochastic processes. New York: Academic Press. Karlin, S., & Taylor, H. (1975). A first course in stochastic processes. New York: Academic Press.
go back to reference Kuhn, A., Aertsen, A., Rotter, S. (2003). Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation, 15(1), 67–101.PubMedCrossRef Kuhn, A., Aertsen, A., Rotter, S. (2003). Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation, 15(1), 67–101.PubMedCrossRef
go back to reference Lindner, B., Gangloff, D., Longtin, A., Lewis, J.E. (2009). Broadband coding with dynamic synapses. Journal of Neuroscience, 29(7), 2076–2087.PubMedCrossRef Lindner, B., Gangloff, D., Longtin, A., Lewis, J.E. (2009). Broadband coding with dynamic synapses. Journal of Neuroscience, 29(7), 2076–2087.PubMedCrossRef
go back to reference Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience, 15, 1498–1505.PubMedCrossRef Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience, 15, 1498–1505.PubMedCrossRef
go back to reference Maass, W., & Zador, A. (1999). Dynamic stochastic synapses as computational units. Neural Computation, 11(4), 903–917.PubMedCrossRef Maass, W., & Zador, A. (1999). Dynamic stochastic synapses as computational units. Neural Computation, 11(4), 903–917.PubMedCrossRef
go back to reference Markram, H., Wang, Y., Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5323.PubMedCrossRef Markram, H., Wang, Y., Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5323.PubMedCrossRef
go back to reference Matveev, V., & Wang, X. (2000a). Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate. Cerebral Cortex, 10(11), 1143–1153.PubMedCrossRef Matveev, V., & Wang, X. (2000a). Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate. Cerebral Cortex, 10(11), 1143–1153.PubMedCrossRef
go back to reference Matveev, V., & Wang, X. (2000b). Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. Journal of Neuroscience, 20(4), 1575–1588.PubMed Matveev, V., & Wang, X. (2000b). Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. Journal of Neuroscience, 20(4), 1575–1588.PubMed
go back to reference McAdams, C., & Maunsell, J. (1999). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23(4), 765–773.PubMedCrossRef McAdams, C., & Maunsell, J. (1999). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23(4), 765–773.PubMedCrossRef
go back to reference Melkonian, D., & Kostopoulos, G. (1996). Stochastic particle formulation of the vesicle hypothesis. Relevance to short-term phenomena. NeuroReport, 7(4), 937–942.PubMedCrossRef Melkonian, D., & Kostopoulos, G. (1996). Stochastic particle formulation of the vesicle hypothesis. Relevance to short-term phenomena. NeuroReport, 7(4), 937–942.PubMedCrossRef
go back to reference Merkel, M., & Lindner, B. (2010). Synaptic filtering of rate-coded information. Physical Review E, 81(4). Merkel, M., & Lindner, B. (2010). Synaptic filtering of rate-coded information. Physical Review E, 81(4).
go back to reference Moreno-Bote, R., & Parga, N. (2006). Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters, 96(2), 101.CrossRef Moreno-Bote, R., & Parga, N. (2006). Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters, 96(2), 101.CrossRef
go back to reference Moreno-Bote, R., & Parga, N. (2010). Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: Firing rate and correlations. Neural Computation, 22(6), 1528–1572.PubMedCrossRef Moreno-Bote, R., & Parga, N. (2010). Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: Firing rate and correlations. Neural Computation, 22(6), 1528–1572.PubMedCrossRef
go back to reference Moreno-Bote, R., Renart, A., Parga, N. (2008). Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons. Neural Computation, 20(7), 1651–1705.PubMedCrossRef Moreno-Bote, R., Renart, A., Parga, N. (2008). Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons. Neural Computation, 20(7), 1651–1705.PubMedCrossRef
go back to reference Oswald, A.M.M., & Urban, N.N. (2012). Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex. The Journal of Neuroscience, 32(18), 6092–6104.PubMedCrossRef Oswald, A.M.M., & Urban, N.N. (2012). Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex. The Journal of Neuroscience, 32(18), 6092–6104.PubMedCrossRef
go back to reference Rav-Acha, M., Sagiv, N., Segev, I., Bergman, H., Yarom, Y. (2005). Dynamic and spatial features of the inhibitory pallidal GABAergic synapses. Journal of Neuroscience, 135(3), 791–802.CrossRef Rav-Acha, M., Sagiv, N., Segev, I., Bergman, H., Yarom, Y. (2005). Dynamic and spatial features of the inhibitory pallidal GABAergic synapses. Journal of Neuroscience, 135(3), 791–802.CrossRef
go back to reference Rosenbaum, R. (2011). The transfer and propagation of correlated neuronal activity. Ph.D. thesis, University of Houston. Rosenbaum, R. (2011). The transfer and propagation of correlated neuronal activity. Ph.D. thesis, University of Houston.
go back to reference Rosenbaum, R., Rubin, J., Doiron, B. (2012). Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Computational Biology, 8(6), e1002557.PubMedCrossRef Rosenbaum, R., Rubin, J., Doiron, B. (2012). Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Computational Biology, 8(6), e1002557.PubMedCrossRef
go back to reference Rothman, J.S., Cathala, L., Steuber, V., Silver, R.A. (2009). Synaptic depression enables neuronal gain control. Nature, 457(7232), 1015–1018.PubMedCrossRef Rothman, J.S., Cathala, L., Steuber, V., Silver, R.A. (2009). Synaptic depression enables neuronal gain control. Nature, 457(7232), 1015–1018.PubMedCrossRef
go back to reference Rotman, Z., Deng, P.Y., Klyachko, V.A. (2011). Short-term plasticity optimizes synaptic information transmission. Journal of Neuroscience, 31(41), 14800–14809.PubMedCrossRef Rotman, Z., Deng, P.Y., Klyachko, V.A. (2011). Short-term plasticity optimizes synaptic information transmission. Journal of Neuroscience, 31(41), 14800–14809.PubMedCrossRef
go back to reference Salinas, E., & Sejnowski, T. (2000). Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. Journal of Neuroscience, 20(16), 6193.PubMed Salinas, E., & Sejnowski, T. (2000). Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. Journal of Neuroscience, 20(16), 6193.PubMed
go back to reference Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural computation, 14(9), 2111–2155.PubMedCrossRef Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural computation, 14(9), 2111–2155.PubMedCrossRef
go back to reference Senn, W., Markram, H., Tsodyks, M. (2001). An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Computation, 13(1), 35–67.PubMedCrossRef Senn, W., Markram, H., Tsodyks, M. (2001). An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Computation, 13(1), 35–67.PubMedCrossRef
go back to reference Shadlen, M., & Newsome, W. (1998a). Noise, neural codes and cortical organization. Findings and Current Opinion in Cognitive Neuroscience, 4, 569–579.CrossRef Shadlen, M., & Newsome, W. (1998a). Noise, neural codes and cortical organization. Findings and Current Opinion in Cognitive Neuroscience, 4, 569–579.CrossRef
go back to reference Shadlen, M., & Newsome, W. (1998b). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.PubMed Shadlen, M., & Newsome, W. (1998b). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.PubMed
go back to reference Softky, W., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334–350.PubMed Softky, W., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334–350.PubMed
go back to reference Stevens, C., & Zador, A. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1(3), 210–217.PubMedCrossRef Stevens, C., & Zador, A. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1(3), 210–217.PubMedCrossRef
go back to reference Stratonovich, R., & Silverman, R. (1967). Topics in the theory of random noise (Vol. 2). New York: Gordon and Breach. Stratonovich, R., & Silverman, R. (1967). Topics in the theory of random noise (Vol. 2). New York: Gordon and Breach.
go back to reference Stratton, P., & Wiles, J. (2007). Comparing kurtosis score to traditional statistical metrics for characterizing the structure in neural ensemble activity. In Dynamic brain-from neural spikes to behaviors, (pp. 115–122). New York: Springer-Verlag. Stratton, P., & Wiles, J. (2007). Comparing kurtosis score to traditional statistical metrics for characterizing the structure in neural ensemble activity. In Dynamic brain-from neural spikes to behaviors, (pp. 115–122). New York: Springer-Verlag.
go back to reference Tetzlaff, T., Rotter, S., Stark, E., Abeles, M., Aertsen, A., Diesmann, M. (2008). Dependence of neuronal correlations on filter characteristics and marginal spike train statistics. Neural Computation, 20(9), 2133–2184.PubMedCrossRef Tetzlaff, T., Rotter, S., Stark, E., Abeles, M., Aertsen, A., Diesmann, M. (2008). Dependence of neuronal correlations on filter characteristics and marginal spike train statistics. Neural Computation, 20(9), 2133–2184.PubMedCrossRef
go back to reference Tolhurst, D., Movshon, J., Dean, A. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23(8), 775–785.PubMedCrossRef Tolhurst, D., Movshon, J., Dean, A. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23(8), 775–785.PubMedCrossRef
go back to reference Tsodyks, M., Pawelzik, K., Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.PubMedCrossRef Tsodyks, M., Pawelzik, K., Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.PubMedCrossRef
go back to reference Tsodyks, M., Uziel, A., Markram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal Neuroscience, 20(1), 825–835. Tsodyks, M., Uziel, A., Markram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal Neuroscience, 20(1), 825–835.
go back to reference Tsodyks, M.V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 719–723.PubMedCrossRef Tsodyks, M.V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 719–723.PubMedCrossRef
go back to reference Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.PubMedCrossRef Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.PubMedCrossRef
go back to reference Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., Nelson, S.B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17(20), 7926–7940.PubMed Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., Nelson, S.B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17(20), 7926–7940.PubMed
go back to reference Vere-Jones, D. (1966). Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Australian & New Zealand Journal of Statistics, 8(2), 53–63.CrossRef Vere-Jones, D. (1966). Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Australian & New Zealand Journal of Statistics, 8(2), 53–63.CrossRef
go back to reference Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMedCrossRef Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10(6), 1321–1371.PubMedCrossRef
go back to reference Wang, X.J. (1999). Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Journal of Neuroscience, 89(2), 347–362.CrossRef Wang, X.J. (1999). Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Journal of Neuroscience, 89(2), 347–362.CrossRef
go back to reference Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. Journal of Neurophysiology, 79(3), 1219.PubMed Zador, A. (1998). Impact of synaptic unreliability on the information transmitted by spiking neurons. Journal of Neurophysiology, 79(3), 1219.PubMed
go back to reference Zucker, R., & Regehr, W. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64(1), 355–405.PubMedCrossRef Zucker, R., & Regehr, W. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64(1), 355–405.PubMedCrossRef
Metadata
Title
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Authors
Steven Reich
Robert Rosenbaum
Publication date
01-08-2013
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2013
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0438-0

Other articles of this Issue 1/2013

Journal of Computational Neuroscience 1/2013 Go to the issue

Premium Partner