Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2013

01-08-2013

Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model

Authors: Ryota Kobayashi, Katsunori Kitano

Published in: Journal of Computational Neuroscience | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many mechanisms of neural processing rely critically upon the synaptic connectivity between neurons. As our ability to simultaneously record from large populations of neurons expands, the ability to infer network connectivity from this data has become a major goal of computational neuroscience. To address this issue, we employed several different methods to infer synaptic connections from simulated spike data from a realistic local cortical network model. This approach allowed us to directly compare the accuracy of different methods in predicting synaptic connectivity. We compared the performance of model-free (coherence measure and transfer entropy) and model-based (coupled escape rate model) methods of connectivity inference, applying those methods to the simulated spike data from the model networks with different network topologies. Our results indicate that the accuracy of the inferred connectivity was higher for highly clustered, near regular, or small-world networks, while accuracy was lower for random networks, irrespective of which analysis method was employed. Among the employed methods, the model-based method performed best. This model performed with higher accuracy, was less sensitive to threshold changes, and required less data to make an accurate assessment of connectivity. Given that cortical connectivity tends to be highly clustered, our results outline a powerful analytical tool for inferring local synaptic connectivity from observations of spontaneous activity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16, 412–424.PubMedCrossRef Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16, 412–424.PubMedCrossRef
go back to reference Becchetti, A., Gullo, F., Bruno, G., Dossi, E., Lecchi, M., & Wanke, E. (2012). Exact distinction of excitatory and inhibitory neurons in neural networks: a study with GFP-GAD67 neurons optically and electrophysiologically recognized on multielectrode arrays. Frontiers in Neural Circuits, 6, 63.PubMedCrossRef Becchetti, A., Gullo, F., Bruno, G., Dossi, E., Lecchi, M., & Wanke, E. (2012). Exact distinction of excitatory and inhibitory neurons in neural networks: a study with GFP-GAD67 neurons optically and electrophysiologically recognized on multielectrode arrays. Frontiers in Neural Circuits, 6, 63.PubMedCrossRef
go back to reference Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.PubMed Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.PubMed
go back to reference Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.PubMedCrossRef Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.PubMedCrossRef
go back to reference Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal coupling between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences of the United States of America, 106, 14058–14062.PubMedCrossRef Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal coupling between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences of the United States of America, 106, 14058–14062.PubMedCrossRef
go back to reference Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–288.PubMedCrossRef Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–288.PubMedCrossRef
go back to reference Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed
go back to reference Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neural modeling (pp. 1–25). Cambridge, MA: MIT. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neural modeling (pp. 1–25). Cambridge, MA: MIT.
go back to reference Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.PubMedCrossRef Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.PubMedCrossRef
go back to reference Erisir, A., Lau, D., Rudy, B., & Leonard, C. S. (1999). Function of specific K + channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology, 82, 2476–2489.PubMed Erisir, A., Lau, D., Rudy, B., & Leonard, C. S. (1999). Function of specific K + channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology, 82, 2476–2489.PubMed
go back to reference Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.CrossRef Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.CrossRef
go back to reference Field, G. D., Gauthier, J. L., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H., et al. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467, 673–677.PubMedCrossRef Field, G. D., Gauthier, J. L., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H., et al. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467, 673–677.PubMedCrossRef
go back to reference Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PloS One, 4, e6482.PubMedCrossRef Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PloS One, 4, e6482.PubMedCrossRef
go back to reference Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & Gerstner, W. (2011). Extraction of network topology from multi-electrode recording: is there a small-world effect? Frontiers in Computational Neuroscience, 5, 4.PubMedCrossRef Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & Gerstner, W. (2011). Extraction of network topology from multi-electrode recording: is there a small-world effect? Frontiers in Computational Neuroscience, 5, 4.PubMedCrossRef
go back to reference Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press.CrossRef Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press.CrossRef
go back to reference Gourevitch, B., & Eggermont, J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97, 2533–2543.PubMedCrossRef Gourevitch, B., & Eggermont, J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97, 2533–2543.PubMedCrossRef
go back to reference Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.PubMedCrossRef Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.PubMedCrossRef
go back to reference Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., et al. (2004). Synfire chains and cortical songs: temporal modules of cortical activity. Science, 304, 559–564.PubMedCrossRef Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., et al. (2004). Synfire chains and cortical songs: temporal modules of cortical activity. Science, 304, 559–564.PubMedCrossRef
go back to reference Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PloS One, 6, e27431.PubMedCrossRef Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PloS One, 6, e27431.PubMedCrossRef
go back to reference Jolivet, R., Rauch, A., Lüscher, H. R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21, 35–49.PubMedCrossRef Jolivet, R., Rauch, A., Lüscher, H. R., & Gerstner, W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 21, 35–49.PubMedCrossRef
go back to reference Kitano, K., & Fukai, T. (2007). Variability v.s. synchronicity of neural activity local cortical network models with different wiring topologies. Journal of Computational Neuroscience, 23, 237–250.PubMedCrossRef Kitano, K., & Fukai, T. (2007). Variability v.s. synchronicity of neural activity local cortical network models with different wiring topologies. Journal of Computational Neuroscience, 23, 237–250.PubMedCrossRef
go back to reference Kobayashi, R., & Shinomoto, S. (2007). State space method for predicting the spike times of a neuron. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 75, 011925.PubMedCrossRef Kobayashi, R., & Shinomoto, S. (2007). State space method for predicting the spike times of a neuron. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 75, 011925.PubMedCrossRef
go back to reference Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in Computational Neuroscience, 3, 9.PubMedCrossRef Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in Computational Neuroscience, 3, 9.PubMedCrossRef
go back to reference Kulkarni, J. E., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network, 18, 375–407.PubMedCrossRef Kulkarni, J. E., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network, 18, 375–407.PubMedCrossRef
go back to reference Kummer, M., Kirmse, K., Witte, O. W., & Holthoff, K. (2012). Reliable in vivo identification of both GABAergic and glutamatergic neurons using Emx1-Cre driven fluorescent reporter expression. Cell Calcium, 52, 182–189.PubMedCrossRef Kummer, M., Kirmse, K., Witte, O. W., & Holthoff, K. (2012). Reliable in vivo identification of both GABAergic and glutamatergic neurons using Emx1-Cre driven fluorescent reporter expression. Cell Calcium, 52, 182–189.PubMedCrossRef
go back to reference Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.CrossRef Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.CrossRef
go back to reference Mensi, S., Naud, R., Pozzorini, C., Avermann, M., Petersen, C. C. H., & Gerstner, W. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology, 107, 1756–1775.PubMedCrossRef Mensi, S., Naud, R., Pozzorini, C., Avermann, M., Petersen, C. C. H., & Gerstner, W. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology, 107, 1756–1775.PubMedCrossRef
go back to reference Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47–79.PubMedCrossRef Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47–79.PubMedCrossRef
go back to reference Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.PubMedCrossRef Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.PubMedCrossRef
go back to reference Neymotin, S. A., Jacobs, K. M., Fenton, A. A., & Lytton, W. W. (2011). Synaptic information transfer in computer models of neocortical columns. Journal of Computational Neuroscience, 30, 69–84.PubMedCrossRef Neymotin, S. A., Jacobs, K. M., Fenton, A. A., & Lytton, W. W. (2011). Synaptic information transfer in computer models of neocortical columns. Journal of Computational Neuroscience, 30, 69–84.PubMedCrossRef
go back to reference Ohiorhenuan, I. E., & Victor, J. D. (2011). Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. Journal of Computational Neuroscience, 30, 125–141.PubMedCrossRef Ohiorhenuan, I. E., & Victor, J. D. (2011). Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. Journal of Computational Neuroscience, 30, 125–141.PubMedCrossRef
go back to reference Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961.PubMedCrossRef Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961.PubMedCrossRef
go back to reference Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15, 243–262.PubMedCrossRef Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15, 243–262.PubMedCrossRef
go back to reference Perin, R., Berger, T. K., & Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences USA, 108, 5419–5424.CrossRef Perin, R., Berger, T. K., & Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences USA, 108, 5419–5424.CrossRef
go back to reference Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neural spike trains and stochastic point processes II. Simultaneous spike trains. Biophysical Journal, 7, 419–440.PubMedCrossRef Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neural spike trains and stochastic point processes II. Simultaneous spike trains. Biophysical Journal, 7, 419–440.PubMedCrossRef
go back to reference Petersen, C. C. H. (2002). Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. Journal of Neurophysiology, 87, 2904–2914.PubMed Petersen, C. C. H. (2002). Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. Journal of Neurophysiology, 87, 2904–2914.PubMed
go back to reference Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995–999.PubMedCrossRef Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995–999.PubMedCrossRef
go back to reference Platkiewicz, J., & Brette, R. (2010). A threshold equation for action potential initiation. PLoS Computational Biology, 6, 1000850.CrossRef Platkiewicz, J., & Brette, R. (2010). A threshold equation for action potential initiation. PLoS Computational Biology, 6, 1000850.CrossRef
go back to reference Shinomoto, S. (2010). Fitting a stochastic spiking model to neuronal current injection data. Neural Networks, 23, 764–769.PubMedCrossRef Shinomoto, S. (2010). Fitting a stochastic spiking model to neuronal current injection data. Neural Networks, 23, 764–769.PubMedCrossRef
go back to reference Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.PubMedCrossRef Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.PubMedCrossRef
go back to reference Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.PubMedCrossRef Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.PubMedCrossRef
go back to reference Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.PubMedCrossRef Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.PubMedCrossRef
go back to reference Stetter, O., Battaglia, D., Soriano, J., & Geisel, T. (2012). Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Computational Biology, 8, e1002653.PubMedCrossRef Stetter, O., Battaglia, D., Soriano, J., & Geisel, T. (2012). Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Computational Biology, 8, e1002653.PubMedCrossRef
go back to reference Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., & Ikegaya, Y. (2010). Circuit topology for synchronizing neurons in spontaneously active networks. Proceedings of the National Academy of Sciences of the United States of America, 107, 10244–10249.PubMedCrossRef Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., & Ikegaya, Y. (2010). Circuit topology for synchronizing neurons in spontaneously active networks. Proceedings of the National Academy of Sciences of the United States of America, 107, 10244–10249.PubMedCrossRef
go back to reference Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.PubMedCrossRef Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.PubMedCrossRef
go back to reference Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.PubMedCrossRef Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.PubMedCrossRef
go back to reference Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 710–723.CrossRef Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 710–723.CrossRef
go back to reference Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks with frequency-depedent synapses. Journal of Neuroscience, 20, RC50.PubMed Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks with frequency-depedent synapses. Journal of Neuroscience, 20, RC50.PubMed
go back to reference Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuron network model. Journal of Neuroscience, 16, 6402–6413.PubMed Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuron network model. Journal of Neuroscience, 16, 6402–6413.PubMed
go back to reference Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.PubMedCrossRef Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.PubMedCrossRef
go back to reference Yamauchi, S., Kim, H., & Shinomoto, S. (2011). Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times. Frontiers in Computational Neuroscience, 5, 42.PubMedCrossRef Yamauchi, S., Kim, H., & Shinomoto, S. (2011). Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times. Frontiers in Computational Neuroscience, 5, 42.PubMedCrossRef
go back to reference Yger, P., Boustani, S. E., Destexhe, A., & Frégnac, Y. (2011). Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons. Journal of Computational Neuroscience, 31, 229–245.PubMedCrossRef Yger, P., Boustani, S. E., Destexhe, A., & Frégnac, Y. (2011). Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons. Journal of Computational Neuroscience, 31, 229–245.PubMedCrossRef
Metadata
Title
Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model
Authors
Ryota Kobayashi
Katsunori Kitano
Publication date
01-08-2013
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2013
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0443-y

Other articles of this Issue 1/2013

Journal of Computational Neuroscience 1/2013 Go to the issue

Premium Partner