Skip to main content

01.10.2007

Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies

verfasst von: Katsunori Kitano, Tomoki Fukai

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamical behavior of a biological neuronal network depends significantly on the spatial pattern of synaptic connections among neurons. While neuronal network dynamics has extensively been studied with simple wiring patterns, such as all-to-all or random synaptic connections, not much is known about the activity of networks with more complicated wiring topologies. Here, we examined how different wiring topologies may influence the response properties of neuronal networks, paying attention to irregular spike firing, which is known as a characteristic of in vivo cortical neurons, and spike synchronicity. We constructed a recurrent network model of realistic neurons and systematically rewired the recurrent synapses to change the network topology, from a localized regular and a “small-world” network topology to a distributed random network topology. Regular and small-world wiring patterns greatly increased the irregularity or the coefficient of variation (Cv) of output spike trains, whereas such an increase was small in random connectivity patterns. For given strength of recurrent synapses, the firing irregularity exhibited monotonous decreases from the regular to the random network topology. By contrast, the spike coherence between an arbitrary neuron pair exhibited a non-monotonous dependence on the topological wiring pattern. More precisely, the wiring pattern to maximize the spike coherence varied with the strength of recurrent synapses. In a certain range of the synaptic strength, the spike coherence was maximal in the small-world network topology, and the long-range connections introduced in this wiring changed the dependence of spike synchrony on the synaptic strength moderately. However, the effects of this network topology were not really special in other properties of network activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26, 63–72.PubMedCrossRef Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26, 63–72.PubMedCrossRef
Zurück zum Zitat Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRef Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRef
Zurück zum Zitat Buzsaki, G., Geisler, C., Henze, D. A., & Wang, X. J. (2004). Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends in Neurosciences, 27, 186–193.PubMedCrossRef Buzsaki, G., Geisler, C., Henze, D. A., & Wang, X. J. (2004). Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends in Neurosciences, 27, 186–193.PubMedCrossRef
Zurück zum Zitat Chow, C. C., & White, A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71, 3013–3021.PubMedCrossRef Chow, C. C., & White, A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71, 3013–3021.PubMedCrossRef
Zurück zum Zitat Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch, & I. Segev (Eds.), Methods in neural modeling (pp. 1–25). Cambridge, MA: MIT. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch, & I. Segev (Eds.), Methods in neural modeling (pp. 1–25). Cambridge, MA: MIT.
Zurück zum Zitat Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed
Zurück zum Zitat Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscientist, 107, 13–24. Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscientist, 107, 13–24.
Zurück zum Zitat Dyhrfjeld-Johnsen, J., Santhakumar, V., Morgan, R. J., Huerta, R., Tsimring, L., Soltesz, I. (2007). Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. Journal of Neurophysiology, 97, 1566–1587.PubMedCrossRef Dyhrfjeld-Johnsen, J., Santhakumar, V., Morgan, R. J., Huerta, R., Tsimring, L., Soltesz, I. (2007). Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. Journal of Neurophysiology, 97, 1566–1587.PubMedCrossRef
Zurück zum Zitat Erisir, A., Lau, D., Rudy, B., & Leonard, C. S. (1999). Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology, 82, 2476–2489.PubMed Erisir, A., Lau, D., Rudy, B., & Leonard, C. S. (1999). Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology, 82, 2476–2489.PubMed
Zurück zum Zitat Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRef Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRef
Zurück zum Zitat Foldy, C., Dyhrfjeld-Johnsen, J., & Soltesz, I. (2005). Structure of cortical microcircuit theory. Journal of Physiology, 562, 47–54.PubMedCrossRef Foldy, C., Dyhrfjeld-Johnsen, J., & Soltesz, I. (2005). Structure of cortical microcircuit theory. Journal of Physiology, 562, 47–54.PubMedCrossRef
Zurück zum Zitat Fukai, T. (2000). Neuronal communication within synchronous gamma oscillations. NeuroReport, 11, 3457–3460.PubMedCrossRef Fukai, T. (2000). Neuronal communication within synchronous gamma oscillations. NeuroReport, 11, 3457–3460.PubMedCrossRef
Zurück zum Zitat Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.PubMedCrossRef Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.PubMedCrossRef
Zurück zum Zitat Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.PubMedCrossRef Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.PubMedCrossRef
Zurück zum Zitat Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10, 3178–3182.PubMed Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10, 3178–3182.PubMed
Zurück zum Zitat Kalisman, N., Siberberg, G., & Markram, H. (2005). The neocortical microcircuit as a tabula rasa. Proceedings of the National Academy of Sciences of the United States of America, 102, 880–885.PubMedCrossRef Kalisman, N., Siberberg, G., & Markram, H. (2005). The neocortical microcircuit as a tabula rasa. Proceedings of the National Academy of Sciences of the United States of America, 102, 880–885.PubMedCrossRef
Zurück zum Zitat Koch, C. (1999). Biophysics of computation. New York: Oxford University Press. Koch, C. (1999). Biophysics of computation. New York: Oxford University Press.
Zurück zum Zitat Lago-Fernández, L. F., Huerta, R., Corbacho, F., & Sigüenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters, 84, 2758–2761.PubMedCrossRef Lago-Fernández, L. F., Huerta, R., Corbacho, F., & Sigüenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters, 84, 2758–2761.PubMedCrossRef
Zurück zum Zitat Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRef Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRef
Zurück zum Zitat Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.PubMedCrossRef Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.PubMedCrossRef
Zurück zum Zitat Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.PubMedCrossRef Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.PubMedCrossRef
Zurück zum Zitat Netoff, T. I., Clewley, R., Arno, S., Keck, T., & White, J. A. (2004). Epilepsy in small-world networks. Journal of Neuroscience, 24, 8075–8083.PubMedCrossRef Netoff, T. I., Clewley, R., Arno, S., Keck, T., & White, J. A. (2004). Epilepsy in small-world networks. Journal of Neuroscience, 24, 8075–8083.PubMedCrossRef
Zurück zum Zitat Nomura, M., Fukai, T., & Aoyagi, T. (2003). Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Computation, 15, 2179–2198.PubMedCrossRef Nomura, M., Fukai, T., & Aoyagi, T. (2003). Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Computation, 15, 2179–2198.PubMedCrossRef
Zurück zum Zitat Petersen, C. C. H. (2002). Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. Journal of Neurophysiology, 87, 2904–2914.PubMed Petersen, C. C. H. (2002). Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. Journal of Neurophysiology, 87, 2904–2914.PubMed
Zurück zum Zitat Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMed Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMed
Zurück zum Zitat Shinomoto, S., Miyazaki, Y., Tamura, H., & Fujita, I. (2005). Regional and laminar differences in in vivo firing patterns of primate cortical neurons. Journal of Neurophysiology, 94, 567–575.PubMedCrossRef Shinomoto, S., Miyazaki, Y., Tamura, H., & Fujita, I. (2005). Regional and laminar differences in in vivo firing patterns of primate cortical neurons. Journal of Neurophysiology, 94, 567–575.PubMedCrossRef
Zurück zum Zitat Softky, W. R., & Koch, C. (1993). The high irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13, 334–350.PubMed Softky, W. R., & Koch, C. (1993). The high irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13, 334–350.PubMed
Zurück zum Zitat Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.PubMedCrossRef Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.PubMedCrossRef
Zurück zum Zitat Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.PubMedCrossRef Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.PubMedCrossRef
Zurück zum Zitat Stepanyants, A., Tamás, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRef Stepanyants, A., Tamás, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRef
Zurück zum Zitat Stevens, C. F., & Zador, A. M. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210–217.PubMedCrossRef Stevens, C. F., & Zador, A. M. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210–217.PubMedCrossRef
Zurück zum Zitat Traub, R., Whittington, M., Stanford, M., & Jefferys, J. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383, 621–624.PubMedCrossRef Traub, R., Whittington, M., Stanford, M., & Jefferys, J. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature, 383, 621–624.PubMedCrossRef
Zurück zum Zitat Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 710–723.CrossRef Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 710–723.CrossRef
Zurück zum Zitat Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuron network model. Journal of Neuroscience, 16, 6402–6413.PubMed Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuron network model. Journal of Neuroscience, 16, 6402–6413.PubMed
Zurück zum Zitat Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.PubMedCrossRef Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.PubMedCrossRef
Zurück zum Zitat Wolfart, J., Debay, D., Le Masson, G., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.PubMedCrossRef Wolfart, J., Debay, D., Le Masson, G., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.PubMedCrossRef
Zurück zum Zitat Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8, 1552–1559.PubMedCrossRef Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8, 1552–1559.PubMedCrossRef
Zurück zum Zitat Yoshimura, Y., Dantzker, J. L. M., & Callaway, E. M. (2005). Excitatory cortical neurons from fine-scale functional networks. Nature, 433, 868–873.PubMedCrossRef Yoshimura, Y., Dantzker, J. L. M., & Callaway, E. M. (2005). Excitatory cortical neurons from fine-scale functional networks. Nature, 433, 868–873.PubMedCrossRef
Metadaten
Titel
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies
verfasst von
Katsunori Kitano
Tomoki Fukai
Publikationsdatum
01.10.2007
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2007
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-007-0030-1