Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2013

01-08-2013

Computational principles underlying the recognition of acoustic signals in insects

Authors: Jan Clemens, R. Matthias Hennig

Published in: Journal of Computational Neuroscience | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets—so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters—known from visual and auditory physiology—explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akre, K.L., Farris, H.E., Lea, A.M., Page, R.A., Ryan, M.J. (2011). Signal perception in frogs and bats and the evolution of mating signals. Science, 333(6043), 751–752.PubMedCrossRef Akre, K.L., Farris, H.E., Lea, A.M., Page, R.A., Ryan, M.J. (2011). Signal perception in frogs and bats and the evolution of mating signals. Science, 333(6043), 751–752.PubMedCrossRef
go back to reference Alexander, R.D. (1957). The song relationships of four species of ground crickets (Orthoptera: Gryllidae: Nemobius). Ohio Journal of Science, 57(3), 153–163. Alexander, R.D. (1957). The song relationships of four species of ground crickets (Orthoptera: Gryllidae: Nemobius). Ohio Journal of Science, 57(3), 153–163.
go back to reference Alexander, R.D. (1962). Evolutionary change in cricket acoustical communication. Evolution, 16, 443–467.CrossRef Alexander, R.D. (1962). Evolutionary change in cricket acoustical communication. Evolution, 16, 443–467.CrossRef
go back to reference Atencio, C.A., Sharpee, T.O., Schreiner, C.E. (2008). Cooperative nonlinearities in auditory cortical neurons. Neuron, 58, 956–966.PubMedCrossRef Atencio, C.A., Sharpee, T.O., Schreiner, C.E. (2008). Cooperative nonlinearities in auditory cortical neurons. Neuron, 58, 956–966.PubMedCrossRef
go back to reference Bush, S.L., & Schul, J. (2005). Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 192, 1–9. Bush, S.L., & Schul, J. (2005). Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 192, 1–9.
go back to reference Carandini, M., & Heeger, D.J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.CrossRef Carandini, M., & Heeger, D.J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.CrossRef
go back to reference Clemens, J., Wohlgemuth, S., Ronacher, B. (2012). Nonlinear com putations underlying temporal and population sparseness in the auditory system of the grasshopper. Journal of Neuroscience, 32(29), 10,053–10,062.CrossRef Clemens, J., Wohlgemuth, S., Ronacher, B. (2012). Nonlinear com putations underlying temporal and population sparseness in the auditory system of the grasshopper. Journal of Neuroscience, 32(29), 10,053–10,062.CrossRef
go back to reference Creutzig, F., Benda, J., Wohlgemuth, S., Stumpner, A., Ronacher, B., Herz, A.V.M. (2010). Timescale-invariant pattern recognition by feedforward inhibition and parallel signal processing. Neural 697 Computation, 22(6), 1493–1510.PubMedCrossRef Creutzig, F., Benda, J., Wohlgemuth, S., Stumpner, A., Ronacher, B., Herz, A.V.M. (2010). Timescale-invariant pattern recognition by feedforward inhibition and parallel signal processing. Neural 697 Computation, 22(6), 1493–1510.PubMedCrossRef
go back to reference Desutter Grandcolas, L., & Robillard, T. (2003). Phylogeny and the evolution of calling songs in Gryllus (Insecta, Orthoptera, Gryllidae). Zoologica Scripta, 32(2), 173–183.CrossRef Desutter Grandcolas, L., & Robillard, T. (2003). Phylogeny and the evolution of calling songs in Gryllus (Insecta, Orthoptera, Gryllidae). Zoologica Scripta, 32(2), 173–183.CrossRef
go back to reference Fairhall, A.L., Burlingame, A.C., Narasimhan, R., Harris, R.A., Puchalla, J.L., Berry, M.J. (2006). Selectivity for multiple stimulus features in retinal ganglion cells. Journal of Neurophysiology, 96, 2724–2738.PubMedCrossRef Fairhall, A.L., Burlingame, A.C., Narasimhan, R., Harris, R.A., Puchalla, J.L., Berry, M.J. (2006). Selectivity for multiple stimulus features in retinal ganglion cells. Journal of Neurophysiology, 96, 2724–2738.PubMedCrossRef
go back to reference Gerhardt, C.H., & Huber, F. (2002). Acoustic Communication in Insects and Anurans. Chicago: University of Chicago Press. Gerhardt, C.H., & Huber, F. (2002). Acoustic Communication in Insects and Anurans. Chicago: University of Chicago Press.
go back to reference Giraud, A.L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.PubMedCrossRef Giraud, A.L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.PubMedCrossRef
go back to reference Grobe, B., Rothbart, M.M., Hanschke, A., Hennig, R.M. (2012). Auditory processing at two time scales by the cricket Gryllus bimaculatus. Journal of Experimental Biology, 215(10), 1681–1690.PubMedCrossRef Grobe, B., Rothbart, M.M., Hanschke, A., Hennig, R.M. (2012). Auditory processing at two time scales by the cricket Gryllus bimaculatus. Journal of Experimental Biology, 215(10), 1681–1690.PubMedCrossRef
go back to reference Hennig, R.M. (2003). Acoustic feature extraction by cross-correlation in crickets? Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 189(8), 589–598.CrossRef Hennig, R.M. (2003). Acoustic feature extraction by cross-correlation in crickets? Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 189(8), 589–598.CrossRef
go back to reference Hennig, R.M. (2009). Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 195(10), 971–987.CrossRef Hennig, R.M. (2009). Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 195(10), 971–987.CrossRef
go back to reference Hennig, R.M., & Weber, T. (1997). Filtering of temporal parameters of the calling song by cricket females of two closely related species: a behavioral analysis. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 180(6), 621–630.CrossRef Hennig, R.M., & Weber, T. (1997). Filtering of temporal parameters of the calling song by cricket females of two closely related species: a behavioral analysis. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 180(6), 621–630.CrossRef
go back to reference Hoy, R., Hoikkala, A., Kaneshiro, K. (1988). Hawaiian courtship songs: evolutionary innovation in communication signals of Drosophila. Science, 240(4849), 217–219.PubMedCrossRef Hoy, R., Hoikkala, A., Kaneshiro, K. (1988). Hawaiian courtship songs: evolutionary innovation in communication signals of Drosophila. Science, 240(4849), 217–219.PubMedCrossRef
go back to reference Kostarakos, K., & Hedwig, B. (2012). Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. Journal of Neuroscience, 32(28), 9601–9612.PubMedCrossRef Kostarakos, K., & Hedwig, B. (2012). Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. Journal of Neuroscience, 32(28), 9601–9612.PubMedCrossRef
go back to reference Machens, C.K., Stemmler, M., Prinz, P., Krahe, R., Ronacher, B., Herz, A.V.M. (2001). Representation of acoustic communication signals by insect auditory receptor neurons. Journal of Neuroscience, 21(9), 3215–3227.PubMed Machens, C.K., Stemmler, M., Prinz, P., Krahe, R., Ronacher, B., Herz, A.V.M. (2001). Representation of acoustic communication signals by insect auditory receptor neurons. Journal of Neuroscience, 21(9), 3215–3227.PubMed
go back to reference Mitchell, M. (1998). An introduction to genetic algorithms (complex adaptive systems) (3rd printing ed.). A Bradford Book. Mitchell, M. (1998). An introduction to genetic algorithms (complex adaptive systems) (3rd printing ed.). A Bradford Book.
go back to reference Nagel, K.I., & Doupe, A.J. (2006). Temporal processing and adaptation in the songbird auditory forebrain. Neuron, 51(6), 845–859.PubMedCrossRef Nagel, K.I., & Doupe, A.J. (2006). Temporal processing and adaptation in the songbird auditory forebrain. Neuron, 51(6), 845–859.PubMedCrossRef
go back to reference Otte, D. (1992). Evolution of cricket songs. Journal of Orthoptera Research, 1(1), 25–49.CrossRef Otte, D. (1992). Evolution of cricket songs. Journal of Orthoptera Research, 1(1), 25–49.CrossRef
go back to reference Phelps, S.M., & Ryan, M.J. (1998). Neural networks predict response biases of female túngara frogs. Proceedings of the Royal Society of London Series B, 265(1393), 279–285.PubMedCrossRef Phelps, S.M., & Ryan, M.J. (1998). Neural networks predict response biases of female túngara frogs. Proceedings of the Royal Society of London Series B, 265(1393), 279–285.PubMedCrossRef
go back to reference Pillow, J.W., & Simoncelli, E.P. (2006). Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis. Journal of vision, 6, 414–428.PubMedCrossRef Pillow, J.W., & Simoncelli, E.P. (2006). Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis. Journal of vision, 6, 414–428.PubMedCrossRef
go back to reference Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature, 454(7207), 995–999.PubMedCrossRef Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature, 454(7207), 995–999.PubMedCrossRef
go back to reference Pollack, G.S., & Hoy, R. (1979). Temporal pattern as a cue for species-specific calling song recognition in crickets. Science, 204(4391), 429–432.PubMedCrossRef Pollack, G.S., & Hoy, R. (1979). Temporal pattern as a cue for species-specific calling song recognition in crickets. Science, 204(4391), 429–432.PubMedCrossRef
go back to reference Priebe, N.J., & Ferster, D. (2012). Mechanisms of neuronal computation in mammalian visual cortex. Neuron, 75(2), 194–208.PubMedCrossRef Priebe, N.J., & Ferster, D. (2012). Mechanisms of neuronal computation in mammalian visual cortex. Neuron, 75(2), 194–208.PubMedCrossRef
go back to reference Ronacher, B., & Stumpner, A. (1988). Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 163, 517–523.CrossRef Ronacher, B., & Stumpner, A. (1988). Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 163, 517–523.CrossRef
go back to reference Rothbart, M.M., & Hennig, R.M. (2012). The Steppengrille (Gryllus spec./assimilis): Selective filters and signal mismatch on two time scales. PLoS ONE, 7(9), e43975.PubMedCrossRef Rothbart, M.M., & Hennig, R.M. (2012). The Steppengrille (Gryllus spec./assimilis): Selective filters and signal mismatch on two time scales. PLoS ONE, 7(9), e43975.PubMedCrossRef
go back to reference Rothbart, M.M., & Hennig, R.M. (2012). Calling song signals and temporal preference functions in the cricket Teleogryllus leo. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 198(11), 817–825.CrossRef Rothbart, M.M., & Hennig, R.M. (2012). Calling song signals and temporal preference functions in the cricket Teleogryllus leo. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 198(11), 817–825.CrossRef
go back to reference Safi, K., Heinzle, J., Reinhold, K. (2006). Species recognition influences female mate preferences in the common European grasshopper (Chorthippus biguttulus Linnaeus, 1758). Ethology, 112(12), 1225–1230.CrossRef Safi, K., Heinzle, J., Reinhold, K. (2006). Species recognition influences female mate preferences in the common European grasshopper (Chorthippus biguttulus Linnaeus, 1758). Ethology, 112(12), 1225–1230.CrossRef
go back to reference Schmidt, A., Ronacher, B., Hennig, R.M. (2008). The role of frequency, phase and time for processing of amplitude modulated signals by grasshoppers. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 194(3), 221–233.CrossRef Schmidt, A., Ronacher, B., Hennig, R.M. (2008). The role of frequency, phase and time for processing of amplitude modulated signals by grasshoppers. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 194(3), 221–233.CrossRef
go back to reference Schneider, E., & Hennig, R.M. (2012). Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 198(3), 181–191.CrossRef Schneider, E., & Hennig, R.M. (2012). Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 198(3), 181–191.CrossRef
go back to reference Schreiber, S., Erchova, I., Heinemann, U., Herz, A.V.M. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92(1), 408–415.PubMedCrossRef Schreiber, S., Erchova, I., Heinemann, U., Herz, A.V.M. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92(1), 408–415.PubMedCrossRef
go back to reference Schul, J. (1998). Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia ). Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 183(3), 401–410.CrossRef Schul, J. (1998). Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia ). Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 183(3), 401–410.CrossRef
go back to reference von Helversen, D. (1972). Gesang des M’́annchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 81(4), 381–422.CrossRef von Helversen, D. (1972). Gesang des M’́annchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 81(4), 381–422.CrossRef
go back to reference Webb, B., Wessnitzer, J., Bush, S.L., Schul, J., Buchli, J., Ijspeert, A. (2007). Resonant neurons and bushcricket behaviour. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 193(2), 285–288.CrossRef Webb, B., Wessnitzer, J., Bush, S.L., Schul, J., Buchli, J., Ijspeert, A. (2007). Resonant neurons and bushcricket behaviour. Journal of Comparative Physiology A: Sensory Neural, and Behavioral Physiology, 193(2), 285–288.CrossRef
go back to reference Weissman, D.B., Gray, D.A., Pham, H.T., Tijssen, P. (2012). Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa, 3504, 67–88. Weissman, D.B., Gray, D.A., Pham, H.T., Tijssen, P. (2012). Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa, 3504, 67–88.
go back to reference Zorovic, M., & Hedwig, B. (2011). Processing of species-specific auditory patterns in the cricket brain by ascending, local and descending neurons during standing and walking. Journal of Neurophysiology, 105, 2181–2194.PubMedCrossRef Zorovic, M., & Hedwig, B. (2011). Processing of species-specific auditory patterns in the cricket brain by ascending, local and descending neurons during standing and walking. Journal of Neurophysiology, 105, 2181–2194.PubMedCrossRef
Metadata
Title
Computational principles underlying the recognition of acoustic signals in insects
Authors
Jan Clemens
R. Matthias Hennig
Publication date
01-08-2013
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2013
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0441-0

Other articles of this Issue 1/2013

Journal of Computational Neuroscience 1/2013 Go to the issue

Premium Partner