Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2016

01-08-2016 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silica aerogel superinsulation products have a tremendous growth potential, particularly for industrial and pipe insulation. However, the high production cost and the poor mechanical properties prevent the adoption of silica aerogel superinsulation outside of the established niche markets. In this paper, we address these two barriers. We analyze the solvent use of current production processes for ambient-dried silica aerogel and derive a minimal solvent process that approaches the theoretical minimum of one volume of solvent for one volume of aerogel. We apply this process at the pilot scale and produce aerogel granulate with a thermal conductivity of 17.4 mW/(m·K). A review of the different mechanical reinforcement strategies reveals that strengthening typically comes with a penalty in thermal conductivity. In contrast, we highlight some of our recent work on hybrid polysaccharide (cellulose, pectin)—silica aerogels, where the mechanical reinforcement did not significantly increase thermal conductivity as a promising avenue for more robust silica-based hybrid aerogel materials.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Koebel M, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 607–633CrossRef Koebel M, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 607–633CrossRef
2.
3.
4.
go back to reference Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29CrossRef Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29CrossRef
7.
go back to reference Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2000) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2000) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin
8.
go back to reference Nicolaon GA, Teichner S (1968) J Bull Soc Chim Fr 1900:1906 Nicolaon GA, Teichner S (1968) J Bull Soc Chim Fr 1900:1906
9.
10.
go back to reference Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New YorkCrossRef Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New YorkCrossRef
11.
go back to reference Hüsing N, Schubert U (2008) Organically modified monolithic silica aerogels. In: Schubert U, Hüsing N, Laine R (eds) Materials syntheses. Springer, Vienna, pp 39–45CrossRef Hüsing N, Schubert U (2008) Organically modified monolithic silica aerogels. In: Schubert U, Hüsing N, Laine R (eds) Materials syntheses. Springer, Vienna, pp 39–45CrossRef
12.
go back to reference Schwertfeger F, Emmerling A, Gross J, Schubert U, Fricke J (1994) Organically modified silica aerogels. In: Attia Y (ed) Sol–gel processing and applications. Plenum press, New York, pp 343–347CrossRef Schwertfeger F, Emmerling A, Gross J, Schubert U, Fricke J (1994) Organically modified silica aerogels. In: Attia Y (ed) Sol–gel processing and applications. Plenum press, New York, pp 343–347CrossRef
13.
go back to reference Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels, the sol–gel handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 519–574 Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels, the sol–gel handbook. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 519–574
15.
go back to reference Schwertfeger F (1998)Process for producing organically modified aerogel. WO1998005591 A1 Schwertfeger F (1998)Process for producing organically modified aerogel. WO1998005591 A1
16.
go back to reference Koebel M, Zhao S, Brunner S, Simmen C (2015) Process for the production of an aerogel material. WO2015014813 A1 Koebel M, Zhao S, Brunner S, Simmen C (2015) Process for the production of an aerogel material. WO2015014813 A1
17.
18.
go back to reference Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2006) Appl Surf Sci 206:262–270CrossRef Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2006) Appl Surf Sci 206:262–270CrossRef
19.
21.
go back to reference Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2005) Chem Mater 18:285–296CrossRef Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2005) Chem Mater 18:285–296CrossRef
22.
go back to reference Yin W, Venkitachalam S, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein D (2010) J Biomed Mater Res Part A 92:1431–1439 Yin W, Venkitachalam S, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein D (2010) J Biomed Mater Res Part A 92:1431–1439
23.
go back to reference Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) ACS Appl. Mater Interfaces 2:1430–1443CrossRef Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) ACS Appl. Mater Interfaces 2:1430–1443CrossRef
25.
27.
go back to reference Rätzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko ON (2004) Macromol Symp 217:431–443CrossRef Rätzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko ON (2004) Macromol Symp 217:431–443CrossRef
29.
go back to reference Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36–40CrossRef Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36–40CrossRef
30.
go back to reference Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372–378CrossRef Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372–378CrossRef
31.
go back to reference Chidambareswarapattar C, McCarver PM, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Chem Mater 25:3205–3224CrossRef Chidambareswarapattar C, McCarver PM, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Chem Mater 25:3205–3224CrossRef
32.
go back to reference Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) ACS Appl Mater Interfaces 1:2491–2501CrossRef Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) ACS Appl Mater Interfaces 1:2491–2501CrossRef
34.
go back to reference Weigold L, Mohite DP, Mahadik-Khanolkar S, Leventis N, Reichenauer G (2013) J Non-Cryst Solids 368:105–111CrossRef Weigold L, Mohite DP, Mahadik-Khanolkar S, Leventis N, Reichenauer G (2013) J Non-Cryst Solids 368:105–111CrossRef
35.
37.
38.
go back to reference Chen H-B, Chiou B-S, Wang Y-Z, Schiraldi DA (2013) ACS Appl Mater Interfaces 5:1715–1721CrossRef Chen H-B, Chiou B-S, Wang Y-Z, Schiraldi DA (2013) ACS Appl Mater Interfaces 5:1715–1721CrossRef
39.
go back to reference Shamsuri AA, Abdullah DK, Daik R (2012) Cellulose Chem Technol 46:45–52 Shamsuri AA, Abdullah DK, Daik R (2012) Cellulose Chem Technol 46:45–52
40.
go back to reference Liu X, Wang M, Risen WM Jr (2002) Polymer-attached functional inorganic-organic hybrid nano-composite aerogels. Materials Research Society, Boston, pp 435–440 Liu X, Wang M, Risen WM Jr (2002) Polymer-attached functional inorganic-organic hybrid nano-composite aerogels. Materials Research Society, Boston, pp 435–440
41.
go back to reference Zhang W, Zhang Y, Lu C, Deng Y (2012) J Mat Chem 22 11642–11650 Zhang W, Zhang Y, Lu C, Deng Y (2012) J Mat Chem 22 11642–11650
42.
go back to reference Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Biomacromolecules 15:2188–2195CrossRef Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Biomacromolecules 15:2188–2195CrossRef
43.
44.
45.
go back to reference Zhao S, Zhang Z, Sèbe G, Wu R, Rivera Virtudazo RV, Tingaut P, Koebel MM (2015) Adv Funct Mater 25:2326–2334CrossRef Zhao S, Zhang Z, Sèbe G, Wu R, Rivera Virtudazo RV, Tingaut P, Koebel MM (2015) Adv Funct Mater 25:2326–2334CrossRef
46.
go back to reference Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) J Non-Cryst Solids 350:152–164CrossRef Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) J Non-Cryst Solids 350:152–164CrossRef
47.
48.
go back to reference Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Chem Mater 19:2247–2260CrossRef Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Chem Mater 19:2247–2260CrossRef
49.
go back to reference Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Polymer 47:5754–5761CrossRef Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Polymer 47:5754–5761CrossRef
50.
go back to reference Meador MAB (2011) Improving elastic properties of polymer-reinforced aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 315–334CrossRef Meador MAB (2011) Improving elastic properties of polymer-reinforced aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 315–334CrossRef
51.
go back to reference Churu G, Zupančič B, Mohite D, Wisner C, Luo H, Emri I, Sotiriou-Leventis C, Leventis N, Lu H (2015) J Sol–gel Sci Technol 75:98–123CrossRef Churu G, Zupančič B, Mohite D, Wisner C, Luo H, Emri I, Sotiriou-Leventis C, Leventis N, Lu H (2015) J Sol–gel Sci Technol 75:98–123CrossRef
52.
go back to reference Bertino MF, Hund JF, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Leventis N (2004) J Sol–Gel Sci Technol 30:43–48CrossRef Bertino MF, Hund JF, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Leventis N (2004) J Sol–Gel Sci Technol 30:43–48CrossRef
54.
go back to reference Hu X, Littrel K, Ji S, Pickles DG, Risen WM Jr (2001) J Non-Cryst Solids 288:184–190CrossRef Hu X, Littrel K, Ji S, Pickles DG, Risen WM Jr (2001) J Non-Cryst Solids 288:184–190CrossRef
55.
go back to reference Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose 21:2625–2636CrossRef Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose 21:2625–2636CrossRef
56.
57.
go back to reference Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Angew Chem Int Ed 51:2076–2079CrossRef Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Angew Chem Int Ed 51:2076–2079CrossRef
58.
go back to reference Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Carbohydr Polym 122:293–300CrossRef Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Carbohydr Polym 122:293–300CrossRef
59.
go back to reference Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) ACS Appl Mater Interfaces 6:9466–9471CrossRef Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) ACS Appl Mater Interfaces 6:9466–9471CrossRef
60.
go back to reference Zhao S, Malfait WJ, Demilecamps WJ, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Angew Chem Int Ed Engl 127:14490–14494CrossRef Zhao S, Malfait WJ, Demilecamps WJ, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Angew Chem Int Ed Engl 127:14490–14494CrossRef
Metadata
Title
Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale
Publication date
01-08-2016
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4012-5

Other articles of this Issue 2/2016

Journal of Sol-Gel Science and Technology 2/2016 Go to the issue

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Graphene oxide incorporation in lamellar organosiloxane film for improved water vapor barrier property

Premium Partners