Skip to main content
Top

2022 | OriginalPaper | Chapter

6. Carbon Dioxide Sequestration

Author : Pratima Bajpai

Published in: Fourth Generation Biofuels

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Burning of fossil fuel and industrial activities contribute about 79% of greenhouse gas emissions. Carbon dioxide is considered as the main contributor to its enormous emission. Techniques (physical, chemical, and biological methods) for carbon dioxide sequestration are discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference P.A. Beedlow, D.T. Tingey, D.L. Phillips, W.E. Hogsett, D.M. Olszyk, Rising atmospheric CO2 and carbon sequestration in forests. Front. Ecol. Environ. 2, 315–322 (2004) P.A. Beedlow, D.T. Tingey, D.L. Phillips, W.E. Hogsett, D.M. Olszyk, Rising atmospheric CO2 and carbon sequestration in forests. Front. Ecol. Environ. 2, 315–322 (2004)
go back to reference J.R. Benemann, B.L. Koopman, J.C. Weissman, D.M. Eisenberg, W.J. Oswald, Species control in large scale microalgae biomass production. Report to University of California Berkeley SERL 77-5, SAN/740-77/1 (1977) J.R. Benemann, B.L. Koopman, J.C. Weissman, D.M. Eisenberg, W.J. Oswald, Species control in large scale microalgae biomass production. Report to University of California Berkeley SERL 77-5, SAN/740-77/1 (1977)
go back to reference V. Bhola, F. Swalaha, R. Ranjith Kumar, F. Singh, F. Bux, Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 11, 2103–2118 (2014)CrossRef V. Bhola, F. Swalaha, R. Ranjith Kumar, F. Singh, F. Bux, Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 11, 2103–2118 (2014)CrossRef
go back to reference L. Brennan, P. Owende, Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)CrossRef L. Brennan, P. Owende, Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)CrossRef
go back to reference J. Cheng, Y. Huang, J. Feng, J. Sun, J.H. Zhou, K.F. Cen, Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour. Technol. 144(144C), 321–327 (2013)PubMedCrossRef J. Cheng, Y. Huang, J. Feng, J. Sun, J.H. Zhou, K.F. Cen, Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour. Technol. 144(144C), 321–327 (2013)PubMedCrossRef
go back to reference J. Cheng, K. Li, Y.X. Zhu, W.J. Yang, J.H. Zhou, K.F. Cen, Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO2. Bioresour. Technol. 228, 99–105 (2017)PubMedCrossRef J. Cheng, K. Li, Y.X. Zhu, W.J. Yang, J.H. Zhou, K.F. Cen, Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO2. Bioresour. Technol. 228, 99–105 (2017)PubMedCrossRef
go back to reference K. Chokshi, I. Pancha, A. Ghosh, S. Mishra, Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour. Technol. 244, 1376–1383 (2017)PubMedCrossRef K. Chokshi, I. Pancha, A. Ghosh, S. Mishra, Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour. Technol. 244, 1376–1383 (2017)PubMedCrossRef
go back to reference T.J. Chow, H.Y. Su, T.Y. Tsai, H.H. Chou, T.M. Lee, J.S. Chang, Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Bioresour. Technol. 184, 33–41 (2015)PubMedCrossRef T.J. Chow, H.Y. Su, T.Y. Tsai, H.H. Chou, T.M. Lee, J.S. Chang, Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Bioresour. Technol. 184, 33–41 (2015)PubMedCrossRef
go back to reference J.A.V. Costa, G.A. Linde, D.I.P. Atala, Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J. Microbiol. Biotechnol. 16, 15–18 (2000)CrossRef J.A.V. Costa, G.A. Linde, D.I.P. Atala, Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J. Microbiol. Biotechnol. 16, 15–18 (2000)CrossRef
go back to reference D. Dah-Wei Tsai, P.H. Chen, R. Ramaraj, The potential of carbon dioxide capture and sequestration with algae. Ecol. Eng. 98, 17–23 (2017)CrossRef D. Dah-Wei Tsai, P.H. Chen, R. Ramaraj, The potential of carbon dioxide capture and sequestration with algae. Ecol. Eng. 98, 17–23 (2017)CrossRef
go back to reference A. Dash, R. Banerjee, Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: an integrated approach. Bioresour. Technol. 238, 502–509 (2017)PubMedCrossRef A. Dash, R. Banerjee, Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: an integrated approach. Bioresour. Technol. 238, 502–509 (2017)PubMedCrossRef
go back to reference G.P.D. De Silva, P.G. Ranjith, M.S.A. Perera, Geochemical aspects of CO2 sequestration in deep saline aquifers: a review. Fuel 155, 128–143 (2015)CrossRef G.P.D. De Silva, P.G. Ranjith, M.S.A. Perera, Geochemical aspects of CO2 sequestration in deep saline aquifers: a review. Fuel 155, 128–143 (2015)CrossRef
go back to reference J.A. Del Campo, M. Garcia-Gonzalez, M.G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 74, 117–1163 (2007) J.A. Del Campo, M. Garcia-Gonzalez, M.G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 74, 117–1163 (2007)
go back to reference D.J. Farrelly, C.D. Everard, C.C. Fagan, K.P. McDonnell, Carbon sequestration and the role of biological carbon mitigation: a review. Renew. Sustain. Energy Rev. 21, 712–727 (2013)CrossRef D.J. Farrelly, C.D. Everard, C.C. Fagan, K.P. McDonnell, Carbon sequestration and the role of biological carbon mitigation: a review. Renew. Sustain. Energy Rev. 21, 712–727 (2013)CrossRef
go back to reference D.J. Farrelly, L. Brennan, C.D. Everard, K.P. McDonnell, Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor. Appl. Microbiol. Biotechnol. 98(7), 3157–3164 (2014)PubMedCrossRef D.J. Farrelly, L. Brennan, C.D. Everard, K.P. McDonnell, Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor. Appl. Microbiol. Biotechnol. 98(7), 3157–3164 (2014)PubMedCrossRef
go back to reference M. Giordano, J. Beardall, J.A. Raven, CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005)PubMedCrossRef M. Giordano, J. Beardall, J.A. Raven, CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005)PubMedCrossRef
go back to reference H.C. Greenwell, L.M.L. Laurens, R.J. Shields, R.W. Lovitt, K.J. Flynn, Placing microalgae on the biofuels priority list: A review of the technological challenges. J. R. Soc. Interf. 7, 703–726 (2010)CrossRef H.C. Greenwell, L.M.L. Laurens, R.J. Shields, R.W. Lovitt, K.J. Flynn, Placing microalgae on the biofuels priority list: A review of the technological challenges. J. R. Soc. Interf. 7, 703–726 (2010)CrossRef
go back to reference A. Gunther, T. Jakob, R. Goss, S. Konig, D. Spindler, N. Rabiger, S. John, S. Heithoff, M. Fresewinkel, C. Posten, C. Wilhelm, Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour. Technol. 121, 454–457 (2012)PubMedCrossRef A. Gunther, T. Jakob, R. Goss, S. Konig, D. Spindler, N. Rabiger, S. John, S. Heithoff, M. Fresewinkel, C. Posten, C. Wilhelm, Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour. Technol. 121, 454–457 (2012)PubMedCrossRef
go back to reference R. Harun, M. Singh, G.M. Forde, M.K. Danquah, Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy. Rev. 14, 1037–1047 (2010)CrossRef R. Harun, M. Singh, G.M. Forde, M.K. Danquah, Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy. Rev. 14, 1037–1047 (2010)CrossRef
go back to reference S.H. Ho, C.Y. Chen, D.J. Lee, J.S. Chang, Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol. Adv. 29, 189–198 (2011)PubMedCrossRef S.H. Ho, C.Y. Chen, D.J. Lee, J.S. Chang, Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol. Adv. 29, 189–198 (2011)PubMedCrossRef
go back to reference R. Hyvonen, G.I. Agren, S. Linder, T. Persson, M.F. Cotrufo, A. Ekblad, The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New. Phytol. 2007(173), 463–480 (2007)CrossRef R. Hyvonen, G.I. Agren, S. Linder, T. Persson, M.F. Cotrufo, A. Ekblad, The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New. Phytol. 2007(173), 463–480 (2007)CrossRef
go back to reference B. Jia, Y. Song, M. Wu, B. Lin, X. Kang, Z. Hu, Y. Huang, Characterization of long-chain acyl-CoA synthetases which stimulate secretion of fatty acids in green algae Chlamydomonas reinhardtii. Biotechnol. Biofuels 9, 184 (2016)PubMedPubMedCentralCrossRef B. Jia, Y. Song, M. Wu, B. Lin, X. Kang, Z. Hu, Y. Huang, Characterization of long-chain acyl-CoA synthetases which stimulate secretion of fatty acids in green algae Chlamydomonas reinhardtii. Biotechnol. Biofuels 9, 184 (2016)PubMedPubMedCentralCrossRef
go back to reference S.A. Khan, H.M.Z. Rashmi, S. Prasad, U.C. Banerjee, Prospects of biodiesel production from microalgae in India. Renew. Sust. Energy Rev. 13, 2361–2372 (2009)CrossRef S.A. Khan, H.M.Z. Rashmi, S. Prasad, U.C. Banerjee, Prospects of biodiesel production from microalgae in India. Renew. Sust. Energy Rev. 13, 2361–2372 (2009)CrossRef
go back to reference J. Kita, T. Ohsumi, Perspectives on biological research for CO2 ocean sequestration. J. Oceanogr. 60, 695–703 (2004)CrossRef J. Kita, T. Ohsumi, Perspectives on biological research for CO2 ocean sequestration. J. Oceanogr. 60, 695–703 (2004)CrossRef
go back to reference A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q.O. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380 (2010)PubMedCrossRef A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q.O. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371–380 (2010)PubMedCrossRef
go back to reference K. Kumar, C.N. Dasgupta, B. Nayak, P. Lindblad, D. Das, Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8), 4945–4953 (2011)PubMedCrossRef K. Kumar, C.N. Dasgupta, B. Nayak, P. Lindblad, D. Das, Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8), 4945–4953 (2011)PubMedCrossRef
go back to reference R. Lal, Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci 2008(1), 86–100 (2008)CrossRef R. Lal, Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci 2008(1), 86–100 (2008)CrossRef
go back to reference M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgae-based carbon capture. Int. J. Greenhouse Gas Control 10, 456–469 (2012)CrossRef M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgae-based carbon capture. Int. J. Greenhouse Gas Control 10, 456–469 (2012)CrossRef
go back to reference N.M. Langley, S.T.L. Harrison, R.P. Van Hille, A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochem. Eng. J. 68, 70–75 (2012)CrossRef N.M. Langley, S.T.L. Harrison, R.P. Van Hille, A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochem. Eng. J. 68, 70–75 (2012)CrossRef
go back to reference E.S. Lipinsky, R&D status of technologies for utilization of carbon dioxide. Energy Convers. Manag. 33, 505–512 (1992)CrossRef E.S. Lipinsky, R&D status of technologies for utilization of carbon dioxide. Energy Convers. Manag. 33, 505–512 (1992)CrossRef
go back to reference J. Liu, Z. Sun, H. Gerken, J.C. Huang, Y. Jiang, F. Chen, Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl. Microbiol. Biotechnol. 98(11), 5069–5079 (2014)PubMedCrossRef J. Liu, Z. Sun, H. Gerken, J.C. Huang, Y. Jiang, F. Chen, Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl. Microbiol. Biotechnol. 98(11), 5069–5079 (2014)PubMedCrossRef
go back to reference F.X. Malcata, Microalgae and biofuels: a promising partnership? Trends Biotechnol. 29(11), 542 (2011)PubMedCrossRef F.X. Malcata, Microalgae and biofuels: a promising partnership? Trends Biotechnol. 29(11), 542 (2011)PubMedCrossRef
go back to reference M. Meinshausen, S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J.F. Lamarque, K. Matsumoto, S.A. Montzka, S.C.B. Raper, K. Riahi, A. Thomson, G.J.M. Velders, D.P.P. van Vuuren, The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109(1–2), 213–241 (2011)CrossRef M. Meinshausen, S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J.F. Lamarque, K. Matsumoto, S.A. Montzka, S.C.B. Raper, K. Riahi, A. Thomson, G.J.M. Velders, D.P.P. van Vuuren, The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109(1–2), 213–241 (2011)CrossRef
go back to reference M.G.D. Morais, J.A.V. Costa, Carbon dioxide fixation by Chlorella kessleri, Cvulgaris, Scenedesmus obliquus and Spirulina sp cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 29(9), 1349–1352 (2007)PubMedCrossRef M.G.D. Morais, J.A.V. Costa, Carbon dioxide fixation by Chlorella kessleri, Cvulgaris, Scenedesmus obliquus and Spirulina sp cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 29(9), 1349–1352 (2007)PubMedCrossRef
go back to reference T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, F. Bux, Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102, 57–70 (2011)PubMedCrossRef T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, F. Bux, Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102, 57–70 (2011)PubMedCrossRef
go back to reference Y. Nakajima, R. Ueda, The effect of reducing light-harvesting pigment on marine microalgal productivity. J. Appl. Phycol. 12, 285–290 (2000)CrossRef Y. Nakajima, R. Ueda, The effect of reducing light-harvesting pigment on marine microalgal productivity. J. Appl. Phycol. 12, 285–290 (2000)CrossRef
go back to reference A. Nakanishi, S. Aikawa, S.H. Ho, C.Y. Chen, J.S. Chang, T. Hasunuma, A. Kondo, Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp JSC4. Bioresour. Technol. 152, 247–252 (2014)PubMedCrossRef A. Nakanishi, S. Aikawa, S.H. Ho, C.Y. Chen, J.S. Chang, T. Hasunuma, A. Kondo, Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp JSC4. Bioresour. Technol. 152, 247–252 (2014)PubMedCrossRef
go back to reference K. Nouha, R.P. John, S. Yan, R. Tyagi, R.Y. Surampalli, T.C. Zhang, Carbon capture and sequestration: biological technologies, in Carbon Capture and Storage: Physical, Chemical, and Biological Methods (2015), pp. 65–111 K. Nouha, R.P. John, S. Yan, R. Tyagi, R.Y. Surampalli, T.C. Zhang, Carbon capture and sequestration: biological technologies, in Carbon Capture and Storage: Physical, Chemical, and Biological Methods (2015), pp. 65–111
go back to reference A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109, 364–392 (2013)CrossRef A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109, 364–392 (2013)CrossRef
go back to reference P. Pedroni, J. Davison, H. Beckert, P. Bergman, J. Benemann, A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. J. Energy Environ. Technol. 1, 136–215 (2001) P. Pedroni, J. Davison, H. Beckert, P. Bergman, J. Benemann, A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. J. Energy Environ. Technol. 1, 136–215 (2001)
go back to reference H. Peng, D. Wei, G. Chen, F. Chen, Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol. Biofuels 9, 151 (2016a)PubMedPubMedCentralCrossRef H. Peng, D. Wei, G. Chen, F. Chen, Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol. Biofuels 9, 151 (2016a)PubMedPubMedCentralCrossRef
go back to reference H.F. Peng, W. Dong, C. Feng, C. Gu, Regulation of carbon metabolic fluxes in response to CO2 supplementation in phototrophic Chlorella vulgaris: a cytomic and biochemical study. J. Appl. Phycol. 28(2), 1–9 (2016b)CrossRef H.F. Peng, W. Dong, C. Feng, C. Gu, Regulation of carbon metabolic fluxes in response to CO2 supplementation in phototrophic Chlorella vulgaris: a cytomic and biochemical study. J. Appl. Phycol. 28(2), 1–9 (2016b)CrossRef
go back to reference J.C.M. Pires, M.C.M. Alvim-Ferraz, F.G. Martins, M. Simoes, Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16, 3043–3053 (2012)CrossRef J.C.M. Pires, M.C.M. Alvim-Ferraz, F.G. Martins, M. Simoes, Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16, 3043–3053 (2012)CrossRef
go back to reference I. Price, B. Smith, Carbon Capture and Storage, Meeting the Challenge of Climate Change (Bluewave Resources LLC of McLean, Virginia, USA, 2008) I. Price, B. Smith, Carbon Capture and Storage, Meeting the Challenge of Climate Change (Bluewave Resources LLC of McLean, Virginia, USA, 2008)
go back to reference N. Quintana, F. Van der Kooy, M.D. Van de Rhee, G.P. Voshol, R. Verpoorte, Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91(3), 471–490 (2011)PubMedPubMedCentralCrossRef N. Quintana, F. Van der Kooy, M.D. Van de Rhee, G.P. Voshol, R. Verpoorte, Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91(3), 471–490 (2011)PubMedPubMedCentralCrossRef
go back to reference D.A. Russo, A.P. Beckerman, J. Pandhal, Competitive growth experiments with a high-lipid Chlamydomonas reinhardtii mutant strain and its wild-type to predict industrial and ecological risks. AMB Express 7(1), 10 (2017)PubMedPubMedCentralCrossRef D.A. Russo, A.P. Beckerman, J. Pandhal, Competitive growth experiments with a high-lipid Chlamydomonas reinhardtii mutant strain and its wild-type to predict industrial and ecological risks. AMB Express 7(1), 10 (2017)PubMedPubMedCentralCrossRef
go back to reference S.S. Salek, R. Kleerebezem, H.M. Jonkers, G.J. Witkamp, M.C.M. van Loosdrecht, Mineral CO2 sequestration by environmental biotechnological processes. Trends Biotechnol. 31, 139–146 (2013)PubMedCrossRef S.S. Salek, R. Kleerebezem, H.M. Jonkers, G.J. Witkamp, M.C.M. van Loosdrecht, Mineral CO2 sequestration by environmental biotechnological processes. Trends Biotechnol. 31, 139–146 (2013)PubMedCrossRef
go back to reference J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, A look back at the U. S. Department of Energy’s aquatic species program—Biodiesel from algae. NREL/TP-580–24190 (US Department of Energy’s Office of Fuels Development, 1998) J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, A look back at the U. S. Department of Energy’s aquatic species program—Biodiesel from algae. NREL/TP-580–24190 (US Department of Energy’s Office of Fuels Development, 1998)
go back to reference P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)PubMedCrossRef P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)PubMedCrossRef
go back to reference D.J. Stepan, R.E. Shockey, T.A. Moe, R. Dorn, Carbon dioxide sequestering using microalgal systems (University of North Dakota, 2002) D.J. Stepan, R.E. Shockey, T.A. Moe, R. Dorn, Carbon dioxide sequestering using microalgal systems (University of North Dakota, 2002)
go back to reference E.B. Sydney, Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol 101, 5892–5896 (2010)PubMedCrossRef E.B. Sydney, Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol 101, 5892–5896 (2010)PubMedCrossRef
go back to reference H. Tang, M. Chen, M.E. Garcia, N. Abunasser, K.Y. Ng, S.O. Salley, Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol. Bioeng. 108(10), 2280–2287 (2011)PubMedCrossRef H. Tang, M. Chen, M.E. Garcia, N. Abunasser, K.Y. Ng, S.O. Salley, Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol. Bioeng. 108(10), 2280–2287 (2011)PubMedCrossRef
go back to reference N. Usui, M. Ikenouchi, The biological CO2 fixation and utilization project by RITE (1) highly-effective photobioreactor system. Energy Convers. Manage. 38, S487–S492 (1997)CrossRef N. Usui, M. Ikenouchi, The biological CO2 fixation and utilization project by RITE (1) highly-effective photobioreactor system. Energy Convers. Manage. 38, S487–S492 (1997)CrossRef
go back to reference B. Wang, Y.Q. Li, N. Wu, C.Q. Lan, CO2 bio-mitigation using microalgae. Appl Microbiol. Biotechnol 79, 707–718 (2008)PubMedCrossRef B. Wang, Y.Q. Li, N. Wu, C.Q. Lan, CO2 bio-mitigation using microalgae. Appl Microbiol. Biotechnol 79, 707–718 (2008)PubMedCrossRef
go back to reference X. Wang, W. Liu, C.P. Xin, Y. Zheng, Y.B. Cheng, S. Sun, R. Li, X.G. Zhu, S.Y. Dai, P.M. Rentzepis, J.S. Yuan, Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc. Natl. Acad. Sci. u.s.a. 113(50), 14225–14230 (2016)PubMedPubMedCentralCrossRef X. Wang, W. Liu, C.P. Xin, Y. Zheng, Y.B. Cheng, S. Sun, R. Li, X.G. Zhu, S.Y. Dai, P.M. Rentzepis, J.S. Yuan, Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc. Natl. Acad. Sci. u.s.a. 113(50), 14225–14230 (2016)PubMedPubMedCentralCrossRef
go back to reference C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, H.W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations - coalbeds and deep saline aquifers. J. Air. Waste Manage. Assoc. 53, 645–715 (2003)CrossRef C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, H.W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations - coalbeds and deep saline aquifers. J. Air. Waste Manage. Assoc. 53, 645–715 (2003)CrossRef
go back to reference W. Zhou, J. Wang, P. Chen, C. Jia, Q. Kanga, B. Lua, K. Lia, J. Liud, R. Ruan, Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sustain. Energy Rev. 76, 1163–1175 (2017)CrossRef W. Zhou, J. Wang, P. Chen, C. Jia, Q. Kanga, B. Lua, K. Lia, J. Liud, R. Ruan, Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sustain. Energy Rev. 76, 1163–1175 (2017)CrossRef
go back to reference B. Zhu, G. Chen, X. Cao, D. Wei, Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Biores. Technol. 244, 1207–1215 (2017)CrossRef B. Zhu, G. Chen, X. Cao, D. Wei, Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Biores. Technol. 244, 1207–1215 (2017)CrossRef
go back to reference T. Zhu, X. Xie, Z. Li, X. Tan, X. Lu, Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803. Green Chem. 17(1), 421–434 (2014) T. Zhu, X. Xie, Z. Li, X. Tan, X. Lu, Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803. Green Chem. 17(1), 421–434 (2014)
Metadata
Title
Carbon Dioxide Sequestration
Author
Pratima Bajpai
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2001-1_6