Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2015

18-09-2015

Comparative Studies on Al-Based Composite Powder Reinforced with Nano Garnet and Multi-wall Carbon Nanotubes

Authors: M. Raviathul Basariya, V. C. Srivastava, N. K. Mukhopadhyay

Published in: Journal of Materials Engineering and Performance | Issue 11/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Phys. Rev. Lett., 1997, 79, p 1297–1300CrossRef J.P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Phys. Rev. Lett., 1997, 79, p 1297–1300CrossRef
2.
go back to reference E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes, Science, 1997, 277, p 1971–1975CrossRef E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes, Science, 1997, 277, p 1971–1975CrossRef
3.
go back to reference H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, and P.M. Ajayan, Direct Synthesis of Long Single-Walled Carbon Nanotube Strands, Science, 2002, 296(5569), p 884–886CrossRef H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, and P.M. Ajayan, Direct Synthesis of Long Single-Walled Carbon Nanotube Strands, Science, 2002, 296(5569), p 884–886CrossRef
4.
go back to reference K.T. Kashyap and R.G. Patil, On Young’s modulus of Multi-walled Carbon Nanotubes, Bull. Mater. Sci., 2008, 31, p 185–187CrossRef K.T. Kashyap and R.G. Patil, On Young’s modulus of Multi-walled Carbon Nanotubes, Bull. Mater. Sci., 2008, 31, p 185–187CrossRef
5.
go back to reference S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354, p 56–58CrossRef S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354, p 56–58CrossRef
6.
go back to reference H.R.A. Ram, P.G. Koppad, and K.T. Kashyap, Nanoindentation Studies on MWCNT/Aluminum Alloy 6061 Nanocomposites, Mater. Sci. Eng. A, 2013, A559, p 920–923CrossRef H.R.A. Ram, P.G. Koppad, and K.T. Kashyap, Nanoindentation Studies on MWCNT/Aluminum Alloy 6061 Nanocomposites, Mater. Sci. Eng. A, 2013, A559, p 920–923CrossRef
7.
go back to reference R. Pérez-Bustamante, M.J. González-Ibarra, J. González-Cantú, I. Estrada-Guel, J.M. Herrera-Ramírez, M. Miki-Yoshida, and R. Martínez-Sánchez, AA2024-CNTs Composites by Milling Process After T6-Temper Condition, J. Alloys Compd., 2012, 536, p S17–S20CrossRef R. Pérez-Bustamante, M.J. González-Ibarra, J. González-Cantú, I. Estrada-Guel, J.M. Herrera-Ramírez, M. Miki-Yoshida, and R. Martínez-Sánchez, AA2024-CNTs Composites by Milling Process After T6-Temper Condition, J. Alloys Compd., 2012, 536, p S17–S20CrossRef
8.
go back to reference Ruixiao Zheng, Xiaoning Hao, Yanbo Yuan, Zhiwei Wang, Kei Ameyama, and Chaoli Ma, Effect of High Volume Fraction of B4C Particles on the Microstructure and Mechanical Properties of Aluminum Alloy Based Composites, J. Alloys Compd., 2013, 576, p 291–298CrossRef Ruixiao Zheng, Xiaoning Hao, Yanbo Yuan, Zhiwei Wang, Kei Ameyama, and Chaoli Ma, Effect of High Volume Fraction of B4C Particles on the Microstructure and Mechanical Properties of Aluminum Alloy Based Composites, J. Alloys Compd., 2013, 576, p 291–298CrossRef
9.
go back to reference Z. Sadeghian, B. Lotfi, M.H. Enayati, and P. Beiss, Microstructural and Mechanical Evaluation of Al-TiB2 Nanostructured Composites Fabricated by Mechanical Alloying, J. Alloys Compd., 2011, 509, p 7758–7763CrossRef Z. Sadeghian, B. Lotfi, M.H. Enayati, and P. Beiss, Microstructural and Mechanical Evaluation of Al-TiB2 Nanostructured Composites Fabricated by Mechanical Alloying, J. Alloys Compd., 2011, 509, p 7758–7763CrossRef
10.
go back to reference Marta Gajewska, Jan Dutkiewicz, and Jerzy Morgiel, Effect of Reinforcement Particle Size on Microstructure and Mechanical Properties of AlZnMgCu/AIN Nano-composites, J. Alloys Compd., 2014, 568, p S423–427CrossRef Marta Gajewska, Jan Dutkiewicz, and Jerzy Morgiel, Effect of Reinforcement Particle Size on Microstructure and Mechanical Properties of AlZnMgCu/AIN Nano-composites, J. Alloys Compd., 2014, 568, p S423–427CrossRef
11.
go back to reference B.F. Luan, G.H. Wu, N. Hansen, A. Godfrey, and T.Q. Lei, High Strength Al2O3p/6061 Al Composites: Effect of Particles, Subgrains and Precipitates, Mater. Sci. Technol., 2007, 23, p 233–236CrossRef B.F. Luan, G.H. Wu, N. Hansen, A. Godfrey, and T.Q. Lei, High Strength Al2O3p/6061 Al Composites: Effect of Particles, Subgrains and Precipitates, Mater. Sci. Technol., 2007, 23, p 233–236CrossRef
12.
go back to reference B.F. Luan, G.H. Wu, W. Liu, N. Hansen, and T.Q. Lei, High Strength Al2O3p/2024Al Composites: Effect of Particles, Subgrains and Precipitates, Mater. Sci. Technol., 2005, 21, p 1440–1443CrossRef B.F. Luan, G.H. Wu, W. Liu, N. Hansen, and T.Q. Lei, High Strength Al2O3p/2024Al Composites: Effect of Particles, Subgrains and Precipitates, Mater. Sci. Technol., 2005, 21, p 1440–1443CrossRef
13.
go back to reference A. Mazahery, M.O. Shabani, E. Salahi, M.R. Rahimipour, A.A. Tofigh, and M. Razavi, Hardness and Tensile Strength Study on Al356–B4C Composites, Mater. Sci. Technol, 2012, 28, p 634–638CrossRef A. Mazahery, M.O. Shabani, E. Salahi, M.R. Rahimipour, A.A. Tofigh, and M. Razavi, Hardness and Tensile Strength Study on Al356–B4C Composites, Mater. Sci. Technol, 2012, 28, p 634–638CrossRef
14.
go back to reference N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani, and P. Marashi, Preparation and Mechanical Properties of SiC-Reinforced Al6061 Composite by Mechanical Alloying, Mater. Sci. Eng. A, 2008, 492, p 134–140CrossRef N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani, and P. Marashi, Preparation and Mechanical Properties of SiC-Reinforced Al6061 Composite by Mechanical Alloying, Mater. Sci. Eng. A, 2008, 492, p 134–140CrossRef
15.
go back to reference B. Xiong, Z. Xu, Q. Yan, B. Lu, and C. Cai, Effects of SiC Volume Fraction and Aluminum Particulate Size on Interfacial Reactions in SiC Nanoparticulate Reinforced Aluminum Matrix Composites, J. Alloys Compd., 2011, 509(4), p 1187–1191CrossRef B. Xiong, Z. Xu, Q. Yan, B. Lu, and C. Cai, Effects of SiC Volume Fraction and Aluminum Particulate Size on Interfacial Reactions in SiC Nanoparticulate Reinforced Aluminum Matrix Composites, J. Alloys Compd., 2011, 509(4), p 1187–1191CrossRef
16.
go back to reference Y. Saberi, S.M. Zebarjadb, and G.H. Akbaria, On the Role of Nano-size SiC on Lattice Strain and Grain Size of Al/SiC Nanocomposite, J. Alloys Compd., 2009, 484, p 637–640CrossRef Y. Saberi, S.M. Zebarjadb, and G.H. Akbaria, On the Role of Nano-size SiC on Lattice Strain and Grain Size of Al/SiC Nanocomposite, J. Alloys Compd., 2009, 484, p 637–640CrossRef
17.
go back to reference M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, William Andrew Publishing, New York, 2000, p 332 M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, William Andrew Publishing, New York, 2000, p 332
18.
go back to reference A. Shokuhfar, M.R. Dashtbayazi, M.R. Alinejad, and T. Shokuhfar, Characterization of Al/SiC Nanocomposite Prepared by Mechanical Alloying Method, Mater. Sci. Forum, 2007, 553, p 257–265CrossRef A. Shokuhfar, M.R. Dashtbayazi, M.R. Alinejad, and T. Shokuhfar, Characterization of Al/SiC Nanocomposite Prepared by Mechanical Alloying Method, Mater. Sci. Forum, 2007, 553, p 257–265CrossRef
19.
go back to reference S. Kamrani, R. Riedel, S.M.S. Reihani, and H.J. Kleebe, Effect of Reinforcement Volume Fraction on the Mechanical Properties of Al-SiC Nanocomposites Produced by Mechanical Alloying and Consolidation, J. Compos. Mater., 2010, 44, p 313–326CrossRef S. Kamrani, R. Riedel, S.M.S. Reihani, and H.J. Kleebe, Effect of Reinforcement Volume Fraction on the Mechanical Properties of Al-SiC Nanocomposites Produced by Mechanical Alloying and Consolidation, J. Compos. Mater., 2010, 44, p 313–326CrossRef
20.
go back to reference L. Lu, M.O. Lai, and S.H. Yap, Microstructure and Mechanical Properties of Al-4.5 wt% Cu/15 wt-% SiC Composite Prepared Using Ball Mill, Mater. Sci. Technol, 1997, 13, p 192–202CrossRef L. Lu, M.O. Lai, and S.H. Yap, Microstructure and Mechanical Properties of Al-4.5 wt% Cu/15 wt-% SiC Composite Prepared Using Ball Mill, Mater. Sci. Technol, 1997, 13, p 192–202CrossRef
21.
go back to reference M.R. Basariya, V.C. Srivastava, and N.K. Mukhopadhyay, Effect of Milling Time on Structural Evolution and Mechanical Properties of Garnet Reinforced EN AW6082 Composites, Metall. Mater. Trans., 2015, 46(3), p 1360–1373CrossRef M.R. Basariya, V.C. Srivastava, and N.K. Mukhopadhyay, Effect of Milling Time on Structural Evolution and Mechanical Properties of Garnet Reinforced EN AW6082 Composites, Metall. Mater. Trans., 2015, 46(3), p 1360–1373CrossRef
22.
go back to reference P. Jenei, E.Y. Yoon, J. Gubicza, H.S. Kim, J.L. Labar, and T. Ungar, Microstructure and Hardness of Copper-Carbon Nanotube Composites Consolidated by High Pressure Torsion, Mater. Sci. Eng. A, 2011, A528, p 4690–4695CrossRef P. Jenei, E.Y. Yoon, J. Gubicza, H.S. Kim, J.L. Labar, and T. Ungar, Microstructure and Hardness of Copper-Carbon Nanotube Composites Consolidated by High Pressure Torsion, Mater. Sci. Eng. A, 2011, A528, p 4690–4695CrossRef
23.
go back to reference L. Kollo, M. Leparoux, C.R. Bradbury, C. Jaggi, E. Carreno-Morelli, and M. Rodriguez-Arabaizar, Investigation of Planetary Milling for Nanosilicon Carbide Reinforced Aluminum Metal Matrix Composites, J. Alloys Compd., 2010, 489(2), p 394–400CrossRef L. Kollo, M. Leparoux, C.R. Bradbury, C. Jaggi, E. Carreno-Morelli, and M. Rodriguez-Arabaizar, Investigation of Planetary Milling for Nanosilicon Carbide Reinforced Aluminum Metal Matrix Composites, J. Alloys Compd., 2010, 489(2), p 394–400CrossRef
24.
go back to reference S. Sivasankaran, K. Sivaprasad, R. Narayaasamy, and V.K. Iyer, Synthesis, Structure and Sinterability of 6061 AA100-x-xwt.% TiO2 Composites Prepared by High-Energy Ball Milling, J. Alloys Compd., 2010, 491, p 712–721CrossRef S. Sivasankaran, K. Sivaprasad, R. Narayaasamy, and V.K. Iyer, Synthesis, Structure and Sinterability of 6061 AA100-x-xwt.% TiO2 Composites Prepared by High-Energy Ball Milling, J. Alloys Compd., 2010, 491, p 712–721CrossRef
25.
go back to reference S.A. Khadem, S. Nategh, and H. Yoozbashizadeh, Structure and Morphological Evaluation of Al-5 vol.% SiC Nanocomposite Powder Produced by Mechanical Milling, J. Alloys Compd., 2011, 509, p 2221–2226CrossRef S.A. Khadem, S. Nategh, and H. Yoozbashizadeh, Structure and Morphological Evaluation of Al-5 vol.% SiC Nanocomposite Powder Produced by Mechanical Milling, J. Alloys Compd., 2011, 509, p 2221–2226CrossRef
26.
go back to reference S. Bathula, R.C. Anandani, A. Dhar, and A.K. Srivastava, Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Composites Produced by High Energy Ball Milling And Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 545, p 97–102CrossRef S. Bathula, R.C. Anandani, A. Dhar, and A.K. Srivastava, Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Composites Produced by High Energy Ball Milling And Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 545, p 97–102CrossRef
27.
go back to reference M.R. Basariya, V.C. Srivastava, and N.K. Mukhopadhyay, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Aluminum Alloy Composites Produced by Ball Milling, Mater. Des., 2014, 64, p 542–549CrossRef M.R. Basariya, V.C. Srivastava, and N.K. Mukhopadhyay, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Aluminum Alloy Composites Produced by Ball Milling, Mater. Des., 2014, 64, p 542–549CrossRef
28.
go back to reference G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminum and Wolfram, Acta Metall., 1953, 1, p 22–31CrossRef G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminum and Wolfram, Acta Metall., 1953, 1, p 22–31CrossRef
29.
go back to reference W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20CrossRef W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20CrossRef
30.
go back to reference A.K. Chaubey, S. Scudino, N.K. Mukhopadhyay, M.S. Khoshkhoo, B.K. Mishra, and J. Eckert, Effect of Particle Dispersion on the Mechanical Behavior of Al-Based Metal Matrix Composites Reinforced with Nanocrystalline Al-Ca Intermetallics, J. Alloys Compd., 2012, 536, p S134–S137CrossRef A.K. Chaubey, S. Scudino, N.K. Mukhopadhyay, M.S. Khoshkhoo, B.K. Mishra, and J. Eckert, Effect of Particle Dispersion on the Mechanical Behavior of Al-Based Metal Matrix Composites Reinforced with Nanocrystalline Al-Ca Intermetallics, J. Alloys Compd., 2012, 536, p S134–S137CrossRef
31.
go back to reference R. Deaquino-Lara, I. Estrada-Guel, G. Hinojosa-Ruiz, R. Flores-Campos, J.M. Herrera-Ramirez, and R. Martinez-Sanchez, Synthesis of Aluminum Alloy 7075-Graphite Composites by Milling Processes and Hot Extrusion, J. Alloys Compd., 2011, 509S, p S284–S289CrossRef R. Deaquino-Lara, I. Estrada-Guel, G. Hinojosa-Ruiz, R. Flores-Campos, J.M. Herrera-Ramirez, and R. Martinez-Sanchez, Synthesis of Aluminum Alloy 7075-Graphite Composites by Milling Processes and Hot Extrusion, J. Alloys Compd., 2011, 509S, p S284–S289CrossRef
32.
go back to reference B.D. Cullity, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, London, 2001 B.D. Cullity, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, London, 2001
33.
go back to reference C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184CrossRef
34.
go back to reference N.K. Mukhopadhyay and P. Paufler, Micro and Nanoindentation Techniques for Mechanical Characterization of Materials, Intern. Mater. Rev., 2006, 51, p 209–245CrossRef N.K. Mukhopadhyay and P. Paufler, Micro and Nanoindentation Techniques for Mechanical Characterization of Materials, Intern. Mater. Rev., 2006, 51, p 209–245CrossRef
35.
go back to reference H.J. Choi, B.H. Min, J.H. Shin, and D.H. Bae, Strengthening in Nanostructured 2024 Aluminum Alloy and Its Composites Containing Carbon Nanotubes, Composites A, 2011, 42, p 1438–1444CrossRef H.J. Choi, B.H. Min, J.H. Shin, and D.H. Bae, Strengthening in Nanostructured 2024 Aluminum Alloy and Its Composites Containing Carbon Nanotubes, Composites A, 2011, 42, p 1438–1444CrossRef
36.
go back to reference L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworth, London, 1976 L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworth, London, 1976
Metadata
Title
Comparative Studies on Al-Based Composite Powder Reinforced with Nano Garnet and Multi-wall Carbon Nanotubes
Authors
M. Raviathul Basariya
V. C. Srivastava
N. K. Mukhopadhyay
Publication date
18-09-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2015
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1718-4

Other articles of this Issue 11/2015

Journal of Materials Engineering and Performance 11/2015 Go to the issue

Premium Partners