Skip to main content
Top
Published in: Journal of Electronic Materials 8/2023

29-03-2023 | Topical Collection: 19th Conference on Defects (DRIP XIX)

Contribution of 90° Si-Core Partial Dislocation to Asymmetric Double-Rhombic Single Shockley-Type Stacking Faults in 4H-SiC Epitaxial Layers

Authors: Johji Nishio, Chiharu Ota, Ryosuke Iijima

Published in: Journal of Electronic Materials | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The expanding shapes of the double-rhombic single Shockley-type stacking faults (DRSFs) from half-loop array (HLA)-type basal plane dislocations (BPDs) and non-HLA-type BPDs were investigated by combining photoluminescence imaging and ultraviolet light illumination. The expansion rate of HLA-type DRSFs was found to increase rapidly after coalescence between neighboring DRSFs. It is thought that the 90° silicon-core [Si(g)] partial dislocation (PD) was a candidate for an expanding front that contributes to extremely rapid expansion of DRSFs. This might be one of the first reports on experimental observations of expanding 90° Si(g) PDs. The 90° Si(g) PDs also seemed to correlate to the symmetry of DRSF shapes for both HLA-type and non-HLA-type DRSFs, and the possibility of every intermediate symmetry was considered by introducing a proportion factor which is defined by combining two running BPD line directions at the origin within the same Burgers vector and glide type.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference T. Kimoto, A. Iijima, H. Tsuchida, T. Miyazawa, T. Tawara, A. Otsuki, T. Kato, and Y. Yonezawa, Understanding and reduction of degradation phenomena in SiC power devices, Proc. IEEE 2017 Intern. Reliability Phys. Symp., 2A-1.1 (2017). T. Kimoto, A. Iijima, H. Tsuchida, T. Miyazawa, T. Tawara, A. Otsuki, T. Kato, and Y. Yonezawa, Understanding and reduction of degradation phenomena in SiC power devices, Proc. IEEE 2017 Intern. Reliability Phys. Symp., 2A-1.1 (2017).
3.
go back to reference A. Agarwal, H. Fatima, S. Haney, and S.-H. Ryu, A new degradation mechanism in high-voltage SiC power MOSFETs. IEEE Electron Device Lett. 28, 587 (2007).CrossRef A. Agarwal, H. Fatima, S. Haney, and S.-H. Ryu, A new degradation mechanism in high-voltage SiC power MOSFETs. IEEE Electron Device Lett. 28, 587 (2007).CrossRef
4.
go back to reference T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Analysis of degradation phenomena in bipolar degradation screening process for SiC-MOSFETs, Proc. 31st Int. Symp. Power Semiconductor Devices & ICs, 2019, p.259 (2019). T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Analysis of degradation phenomena in bipolar degradation screening process for SiC-MOSFETs, Proc. 31st Int. Symp. Power Semiconductor Devices & ICs, 2019, p.259 (2019).
5.
go back to reference N.A. Mahadik, R.E. Stahlbush. M.G. Ancona, E.A. Imhoff, K.D. Hobart, R.L. Myers-Ward, C.R. Eddy, D.K. Gaskill, and F.J. Kub, Observation of stacking faults from basal plane dislocations in highly doped 4H-SiC epilayers. Appl. Phys. Lett. 100, 042102 (2012).CrossRef N.A. Mahadik, R.E. Stahlbush. M.G. Ancona, E.A. Imhoff, K.D. Hobart, R.L. Myers-Ward, C.R. Eddy, D.K. Gaskill, and F.J. Kub, Observation of stacking faults from basal plane dislocations in highly doped 4H-SiC epilayers. Appl. Phys. Lett. 100, 042102 (2012).CrossRef
6.
go back to reference T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).CrossRef T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).CrossRef
7.
go back to reference A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of shockley type stacking faults upon forward degradation in 4H-SiC P-i-N diodes. J. Appl. Phys. 119, 095711 (2016).CrossRef A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of shockley type stacking faults upon forward degradation in 4H-SiC P-i-N diodes. J. Appl. Phys. 119, 095711 (2016).CrossRef
8.
go back to reference S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single shockley-type stacking faults in forward-current degradation of 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 04FR07 (2018).CrossRef S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single shockley-type stacking faults in forward-current degradation of 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 04FR07 (2018).CrossRef
9.
go back to reference A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).CrossRef A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).CrossRef
10.
go back to reference H. Matsuhata, and T. Sekiguchi, Morphology of single shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC. Philos. Mag. 98, 878 (2018).CrossRef H. Matsuhata, and T. Sekiguchi, Morphology of single shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC. Philos. Mag. 98, 878 (2018).CrossRef
11.
go back to reference J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).CrossRef J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).CrossRef
12.
go back to reference J. Nishio, A. Okada, C. Ota, and R. Iijima, Single shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).CrossRef J. Nishio, A. Okada, C. Ota, and R. Iijima, Single shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).CrossRef
13.
go back to reference J. Nishio, C. Ota, and R. Iijima, Conversion of shockley partial dislocation pairs from unexpandable to expandable combinations after epitaxial growth of 4H-SiC. J. Appl. Phys. 130, 075107 (2021).CrossRef J. Nishio, C. Ota, and R. Iijima, Conversion of shockley partial dislocation pairs from unexpandable to expandable combinations after epitaxial growth of 4H-SiC. J. Appl. Phys. 130, 075107 (2021).CrossRef
14.
go back to reference C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes. J. Electron. Mater. 50, 6504 (2021).CrossRef C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes. J. Electron. Mater. 50, 6504 (2021).CrossRef
15.
go back to reference J. Nishio, C. Ota, and R. Iijima, Structural study of single shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).CrossRef J. Nishio, C. Ota, and R. Iijima, Structural study of single shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).CrossRef
16.
go back to reference J. Nishio, C. Ota, and R. Iijima, Partial dislocation structures at expansion terminating areas of bar-shaped single shockley-type stacking faults and basal plane dislocations at the origin in 4H-SiC. Jpn. J. Appl. Phys. 62, 1 (2023).CrossRef J. Nishio, C. Ota, and R. Iijima, Partial dislocation structures at expansion terminating areas of bar-shaped single shockley-type stacking faults and basal plane dislocations at the origin in 4H-SiC. Jpn. J. Appl. Phys. 62, 1 (2023).CrossRef
17.
go back to reference J. Nishio, C. Ota, and R. Iijima, Origin of double-rhombic single shockley stacking faults in 4H-SiC epitaxial layers. J. Electron. Mater. 52, 679 (2023).CrossRef J. Nishio, C. Ota, and R. Iijima, Origin of double-rhombic single shockley stacking faults in 4H-SiC epitaxial layers. J. Electron. Mater. 52, 679 (2023).CrossRef
18.
go back to reference S. Ha, H.J. Chung, N.T. Nuhfer, and M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy. J. Crystal Growth 262, 130 (2004).CrossRef S. Ha, H.J. Chung, N.T. Nuhfer, and M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy. J. Crystal Growth 262, 130 (2004).CrossRef
19.
go back to reference S. Ha, M. Skowronski, and H. Lendenmann, Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide P-i-N diodes. J. Appl. Phys. 96, 393 (2004).CrossRef S. Ha, M. Skowronski, and H. Lendenmann, Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide P-i-N diodes. J. Appl. Phys. 96, 393 (2004).CrossRef
20.
go back to reference X. Zhang, S. Ha, Y. Hanlumnyang, C.H. Chou, V. Rodriguez, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Morphology of basal plane dislocations in 4H-SiC homoepitaxial layers grown by chemical vapor deposition. J. Appl. Phys. 101, 053517 (2007).CrossRef X. Zhang, S. Ha, Y. Hanlumnyang, C.H. Chou, V. Rodriguez, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Morphology of basal plane dislocations in 4H-SiC homoepitaxial layers grown by chemical vapor deposition. J. Appl. Phys. 101, 053517 (2007).CrossRef
21.
go back to reference Z. Zhang, R.E. Stahlbush, P. Pirouz, and T.S. Sudarshan, Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer. J. Electron. Mater. 36, 539 (2007).CrossRef Z. Zhang, R.E. Stahlbush, P. Pirouz, and T.S. Sudarshan, Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer. J. Electron. Mater. 36, 539 (2007).CrossRef
22.
go back to reference X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).CrossRef X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).CrossRef
23.
go back to reference H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida, and K. Matsuzawa, Influence of growth conditions and substrate properties on formation of interfacial dislocations and dislocation half-loop arrays in 4H-SiC (0001) and (000–1) epitaxy. MRS Symp. Proc. 1069, D04-D13 (2008).CrossRef H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida, and K. Matsuzawa, Influence of growth conditions and substrate properties on formation of interfacial dislocations and dislocation half-loop arrays in 4H-SiC (0001) and (000–1) epitaxy. MRS Symp. Proc. 1069, D04-D13 (2008).CrossRef
24.
go back to reference N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R.E. Stahlbush, Mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett. 94, 122108 (2009).CrossRef N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R.E. Stahlbush, Mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett. 94, 122108 (2009).CrossRef
25.
go back to reference R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, and M. Skowronski, Evolution of basal plane dislocations during 4H-SiC epitaxial growth. Mater. Sci. Forum 600–603, 317 (2009). R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, and M. Skowronski, Evolution of basal plane dislocations during 4H-SiC epitaxial growth. Mater. Sci. Forum 600–603, 317 (2009).
26.
go back to reference S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide P-i-N diodes. Appl. Phys. Lett. 83, 4957 (2003).CrossRef S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide P-i-N diodes. Appl. Phys. Lett. 83, 4957 (2003).CrossRef
27.
go back to reference R.E. Stahlbush, M.E. Twigg, J.J. Sumakeris, K.G. Irvine, and P.A. Losee, Mechanisms of stacking fault growth in SiC PiN diodes. MRS Symp. Proc. 815, J6.4 (2004).CrossRef R.E. Stahlbush, M.E. Twigg, J.J. Sumakeris, K.G. Irvine, and P.A. Losee, Mechanisms of stacking fault growth in SiC PiN diodes. MRS Symp. Proc. 815, J6.4 (2004).CrossRef
28.
go back to reference B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, and H. Okumura, Electron-beam-induced current and cathodeluminescence study of dislocation arrays in 4H-SiC homoepitaxial layers. J. Appl. Phys. 106, 074502 (2009).CrossRef B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, and H. Okumura, Electron-beam-induced current and cathodeluminescence study of dislocation arrays in 4H-SiC homoepitaxial layers. J. Appl. Phys. 106, 074502 (2009).CrossRef
29.
go back to reference J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).CrossRef J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).CrossRef
30.
go back to reference P. Pirouz, J.L. Demenet, and M.H. Hong, On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).CrossRef P. Pirouz, J.L. Demenet, and M.H. Hong, On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).CrossRef
31.
go back to reference M. Skowronski, J.Q. Lui, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes. J. Appl. Phys. 92, 4699 (2002).CrossRef M. Skowronski, J.Q. Lui, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes. J. Appl. Phys. 92, 4699 (2002).CrossRef
32.
go back to reference J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).CrossRef J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).CrossRef
33.
go back to reference J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular single shockley stacking fault analyses on 4H-SiC PiN diode with forward voltage degradation. J. Electron. Mater. 49, 5232 (2020).CrossRef J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular single shockley stacking fault analyses on 4H-SiC PiN diode with forward voltage degradation. J. Electron. Mater. 49, 5232 (2020).CrossRef
34.
go back to reference S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 79, 3944 (2001).CrossRef S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 79, 3944 (2001).CrossRef
35.
go back to reference H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chem, and T. Sekiguchi, Contrast analysis of shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).CrossRef H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chem, and T. Sekiguchi, Contrast analysis of shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).CrossRef
Metadata
Title
Contribution of 90° Si-Core Partial Dislocation to Asymmetric Double-Rhombic Single Shockley-Type Stacking Faults in 4H-SiC Epitaxial Layers
Authors
Johji Nishio
Chiharu Ota
Ryosuke Iijima
Publication date
29-03-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10343-8

Other articles of this Issue 8/2023

Journal of Electronic Materials 8/2023 Go to the issue

Topical Collection: 19th Conference on Defects (DRIP XIX)

Crystalline Morphology of SiGe Films Grown on Si(110) Substrates