Skip to main content
Top
Published in: Neural Computing and Applications 11/2018

08-03-2017 | Original Article

Convective Poiseuille flow of Al2O3-EG nanofluid in a porous wavy channel with thermal radiation

Authors: A. Zeeshan, N. Shehzad, R. Ellahi, Sultan Z. Alamri

Published in: Neural Computing and Applications | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In current article, convective Poiseuille boundary layer flow of ethylene glycol (C2H6O2)-based nanofluid with suspended aluminum oxide (Al2O3) nanoparticles through a porous wavy channel has been examined. The impact of thermal radiation, Ohmic dissipation, electric field, and magnetic fields are also considered. The flow is due to constant pressure gradient in a wavy frame of reference. The governed momentum and thermal boundary layer equations is system of PDE’s, which are converted to system of ODE’s via suitable similarity transformations. The homotopy analysis method is applied to solve the governed flow problem. Convergence of series solutions is inspected through h-curves and residual errors norm, whereas the optimal value of convergence control parameter is obtained by means of genetic algorithm Nelder–Mead approach. The influence of numerous involving parameters like Hartmann number, Grashof number, Eckert number, electric parameter, radiation parameter, and porosity parameter on flow, heat transfer, skin friction coefficient and Nusselt number are illustrated through graphs and discussed briefly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vafai K (2005) Handbook of porous media. Taylor and Francis, New YorkMATH Vafai K (2005) Handbook of porous media. Taylor and Francis, New YorkMATH
2.
go back to reference Ingham DB, Pop I (2005) Transport phenomena in porous media III, vol 3. Elsevier, AmsterdamMATH Ingham DB, Pop I (2005) Transport phenomena in porous media III, vol 3. Elsevier, AmsterdamMATH
3.
go back to reference Rashidi S, Nouri- Borujerdi A, Valipour MS, Ellahi R, Pop I (2015) Stress-jump and continuity interface conditions for a cylinder embedded in a porous medium. Transp Porous Media 107(1):171–186CrossRef Rashidi S, Nouri- Borujerdi A, Valipour MS, Ellahi R, Pop I (2015) Stress-jump and continuity interface conditions for a cylinder embedded in a porous medium. Transp Porous Media 107(1):171–186CrossRef
4.
go back to reference Ellahi R, Hassan M, Zeeshan A (2016) Aggregation effects on water base Al2O3 nano fluid over permeable wedge in mixed convection. Asia Pac J Chem Eng 11(2):179–186CrossRef Ellahi R, Hassan M, Zeeshan A (2016) Aggregation effects on water base Al2O3 nano fluid over permeable wedge in mixed convection. Asia Pac J Chem Eng 11(2):179–186CrossRef
5.
go back to reference Mamourian M, Shirvan KM, Ellahi R, Rahimi AB (2016) Optimization of mixed convection heat transfer with entropy generation in a wavy surface square Lid-Driven cavity by means of Taguchi approach. Int J Heat Mass Transf 120:544–554CrossRef Mamourian M, Shirvan KM, Ellahi R, Rahimi AB (2016) Optimization of mixed convection heat transfer with entropy generation in a wavy surface square Lid-Driven cavity by means of Taguchi approach. Int J Heat Mass Transf 120:544–554CrossRef
6.
go back to reference Ellahi R, Riaz A, Abbasbandy S, Hayat T, Vafai K (2014) A study on the mixed convection boundary layer flow and heat transfer over a vertical slender cylinder. Thermal Sci J 18(4):1247–1258CrossRef Ellahi R, Riaz A, Abbasbandy S, Hayat T, Vafai K (2014) A study on the mixed convection boundary layer flow and heat transfer over a vertical slender cylinder. Thermal Sci J 18(4):1247–1258CrossRef
7.
go back to reference Aziz A, Khan WA, Pop I (2012) Free convection boundary layer flow past a horizontal flatplate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int J Therm Sci 56:48–57CrossRef Aziz A, Khan WA, Pop I (2012) Free convection boundary layer flow past a horizontal flatplate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int J Therm Sci 56:48–57CrossRef
8.
go back to reference Shankar PN, Sinha VN (1976) The Rayleigh problem for a wavy wall (impulsive motion generation of viscous fluid flow). J Fluid Mech 77:243–256CrossRef Shankar PN, Sinha VN (1976) The Rayleigh problem for a wavy wall (impulsive motion generation of viscous fluid flow). J Fluid Mech 77:243–256CrossRef
9.
go back to reference Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the ASME international mechanical engineering congress and exposition, vol 66. ASME, San Francisco, pp 99–105 Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the ASME international mechanical engineering congress and exposition, vol 66. ASME, San Francisco, pp 99–105
10.
go back to reference Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRef Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRef
11.
go back to reference Pak BC, Cho YL (1998) Hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRef Pak BC, Cho YL (1998) Hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRef
12.
go back to reference Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:46–455CrossRef Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:46–455CrossRef
13.
go back to reference Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250CrossRef
14.
go back to reference Bhatti MM, Mishra SR, Abbas T, Rashidi MM (2016) A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Neural Comput Appl. doi:10.1007/s00521-016-2768-8 CrossRef Bhatti MM, Mishra SR, Abbas T, Rashidi MM (2016) A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Neural Comput Appl. doi:10.​1007/​s00521-016-2768-8 CrossRef
15.
go back to reference Shirvan KM, Ellahi R, Mamourian M, Mirzakhanlar S (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–774CrossRef Shirvan KM, Ellahi R, Mamourian M, Mirzakhanlar S (2016) Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng 109:761–774CrossRef
16.
go back to reference Hussain S, Aziz A, Aziz T, Khalique CM (2016) Slip flow and heat transfer of nanofluids over a porous plate embedded in a porous medium with temperature dependent viscosity and thermal conductivity. Appl Sci 6(12):376CrossRef Hussain S, Aziz A, Aziz T, Khalique CM (2016) Slip flow and heat transfer of nanofluids over a porous plate embedded in a porous medium with temperature dependent viscosity and thermal conductivity. Appl Sci 6(12):376CrossRef
17.
go back to reference Ellahi R, Hassan M, Zeeshan A (2016) Particle shape effects on marangoni convection boundary layer flow of a nanofluid. Int J Numer Methods Heat Fluid Flow 26(7):2160–2174CrossRef Ellahi R, Hassan M, Zeeshan A (2016) Particle shape effects on marangoni convection boundary layer flow of a nanofluid. Int J Numer Methods Heat Fluid Flow 26(7):2160–2174CrossRef
18.
go back to reference Selimefendigil F, Öztop H (2015) Effects of phase shift on the heat transfer characteristics in pulsating mixed convection flow in a multiple vented cavity. Appl Math Model 39:3666–3677MathSciNetCrossRef Selimefendigil F, Öztop H (2015) Effects of phase shift on the heat transfer characteristics in pulsating mixed convection flow in a multiple vented cavity. Appl Math Model 39:3666–3677MathSciNetCrossRef
19.
go back to reference Srinivas S, Gayatri R, Kodandapani M (2011) Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Commun Non-linear Sci Numer Simul 16:1845–1862MathSciNetCrossRef Srinivas S, Gayatri R, Kodandapani M (2011) Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Commun Non-linear Sci Numer Simul 16:1845–1862MathSciNetCrossRef
20.
go back to reference Tripathi D (2013) Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model 57:1270–1283MathSciNetCrossRef Tripathi D (2013) Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model 57:1270–1283MathSciNetCrossRef
21.
go back to reference Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. Chapman & Hall, Boca RatonCrossRef Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. Chapman & Hall, Boca RatonCrossRef
22.
go back to reference Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37(3):1451–1457MathSciNetCrossRef Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37(3):1451–1457MathSciNetCrossRef
23.
go back to reference Mastorakis NE (2005) Numerical solution of non-linear ordinary differential equations via collocation method (Finite Elements) and genetic algorithms. In: Proceeding of the 6th WSEAS international conferernce on evolutionary computing, Lisbon, Portugal Mastorakis NE (2005) Numerical solution of non-linear ordinary differential equations via collocation method (Finite Elements) and genetic algorithms. In: Proceeding of the 6th WSEAS international conferernce on evolutionary computing, Lisbon, Portugal
24.
go back to reference Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:46–455CrossRef Shehzad N, Zeeshan A, Ellahi R, Vafai K (2016) Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq 222:46–455CrossRef
25.
go back to reference Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S (2015) Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder–Mead method. Int J Numer Methods Heat Fluid Flow 25(3):665–684MathSciNetCrossRef Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S (2015) Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder–Mead method. Int J Numer Methods Heat Fluid Flow 25(3):665–684MathSciNetCrossRef
26.
go back to reference Ogulu A, Bestman AR (1993) Deep heat muscle treatment: a mathematical model-I. Acta Phys Hung 73:3–16 Ogulu A, Bestman AR (1993) Deep heat muscle treatment: a mathematical model-I. Acta Phys Hung 73:3–16
27.
go back to reference Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–572CrossRef Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–572CrossRef
28.
go back to reference Maxwell JCA (1881) Treatise on electricity and magnetism, 2nd edn. Clarendon Press, OxfordMATH Maxwell JCA (1881) Treatise on electricity and magnetism, 2nd edn. Clarendon Press, OxfordMATH
Metadata
Title
Convective Poiseuille flow of Al2O3-EG nanofluid in a porous wavy channel with thermal radiation
Authors
A. Zeeshan
N. Shehzad
R. Ellahi
Sultan Z. Alamri
Publication date
08-03-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2924-9

Other articles of this Issue 11/2018

Neural Computing and Applications 11/2018 Go to the issue

Premium Partner