Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Coordination/Organometallic Compounds and Composites of Carbon Allotropes

Authors : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Published in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal complexes have a lot of useful applications in organic and organometallic chemistry, catalysis [1], medicine as anticancer pharmaceutics and for drug delivery [2], various biological systems [3], polymers [4] and dyes, separation of isotopes [5], and heavy metals [6], among many other uses. Sometimes they are applied for increasing solubility [7, 8] of classic objects, carbon nanotubes (CNTs), which form bundle-like structures with very complex morphologies with a high number of Van der Waals interactions, causing extremely poor solubility in water or organic solvents. Metal complexes are also able to serve as precursors to fill CNTs with metals [9] or oxides [10], to decorate CNTs with metal nanoparticles [11], as well as to be encapsulated by CNTs [12].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The image (functionalization possibilities for SWCNTs: (a) defect-group functionalization, (b) covalent sidewall functionalization, (c) noncovalent functionalization with surfactants, (d) noncovalent exohedral functionalization with polymers, and (e) endohedral functionalization) is reproduced with permission of Intech (I.-Y. Jeon, D.W. Chang, N. Ashok Kumar, and J.-B. Baek. Functionalization of Carbon Nanotubes. IntechOpen, 2010, DOI: https://​doi.​org/​10.​5772/​18396. Available from: https://​www.​intechopen.​com/​books/​carbon-nanotubes-polymer-nanocomposites/​functionalizatio​n-of-carbon-nanotubes).
 
2
The image above is reproduced with permission of Elsevier Science (Chemical Physics Letters, 541, 81–84 (2012)).
 
3
Porphyrin and phthalocyanine composites with carbon nanotubes will be discussed below in separated sections.
 
4
See also information below about other terpyridine complexes, noncovalently attached to CNTs through pyrene moiety.
 
5
Reproduced with permission of the Royal Society of Chemistry
 
6
Terpyridine-containing complexes can also be covalently attached to CNTs; see above.
 
7
The image above is reproduced with permission of Nature (Nat. Chem. 9(1), 33–38 (2017)).
 
8
See chapter above, dedicated to the graphene properties.
 
9
The image above is reproduced with permission of the American Chemical Society (Inorg. Chem., 55(17), 8277–8280 (2016)).
 
10
The image above is reproduced with permission of the Elsevier Science (International Journal of Pharmaceutics, 514(1), 41–51 (2016)).
 
11
The image above is reproduced with permission of the Wiley (Chemistry – A European Journal, 12(2), 376–387 (2005)).
 
12
The image above is reproduced with permission of Nature (Nat. Nanotech., 2, 156–161 (2007)).
 
13
The image above is reproduced with permission of the American Chemical Society (ACS Nano, 9(8), 8194–8205 (2015)).
 
14
The image above is reproduced with permission of the Royal Society of Chemistry (J. Mater. Chem. A, 3, 24,428–24,436 (2015)).
 
15
The image above is reproduced with permission of the Wiley (ChemPhysChem, 16(15), 3214–3232(2015)).
 
16
See also the section on the MOF-derived nanocarbons.
 
17
UMCM-1 (University of Michigan Cryst. Material-1), a mesoporous material with unprecedented levels of microporosity, arises from the coordination copolymn. of a dicarboxylate and a tricarboxylate linker mediated by Zn. See details in: A crystalline mesoporous coordination copolymer with high microporosity. Angewandte Chemie, International Edition, 2008, 47 (4), 677–680.
 
18
HKUST-1 (“Hong Kong University of Science and Technology”) is a metal organic framework (MOF) made up of copper nodes with 1,3,5-benzenetricarboxylic acid struts between them (see http://​www.​chemtube3d.​com/​solidstate/​MOF-HKUST-1.​html). This MOF is frequently used for obtaining graphite hybrid materials (Langmuir, 2011, 27, 10234–10242).
 
Literature
1.
go back to reference P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 ppCrossRef P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 ppCrossRef
2.
go back to reference W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 pp W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 pp
3.
go back to reference N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 pp N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 pp
4.
go back to reference A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA, 1999), 424 pp A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA, 1999), 424 pp
5.
go back to reference B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, Oxford, 2007), 316 pp B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, Oxford, 2007), 316 pp
6.
go back to reference H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, Interface science and technology, vol 6 (Elsevier Science, New York, 2005), 282 ppCrossRef H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, Interface science and technology, vol 6 (Elsevier Science, New York, 2005), 282 ppCrossRef
7.
go back to reference D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)CrossRef D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)CrossRef
8.
go back to reference X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)CrossRef X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)CrossRef
9.
go back to reference J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)CrossRef J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)CrossRef
10.
go back to reference M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)CrossRef M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)CrossRef
11.
go back to reference V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRef V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRef
12.
go back to reference D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)CrossRef D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)CrossRef
13.
go back to reference C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, New York, 2012), 260 ppCrossRef C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, New York, 2012), 260 ppCrossRef
14.
go back to reference P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2011), 314 pp P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2011), 314 pp
15.
go back to reference L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRef L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRef
16.
go back to reference S. Sarkar, R. Cort Haddon, Organometallic Complexes of Graphene and Carbon Nanotubes: Introducing New Perspectives in Atomtronics, Spintronics, High Mobility Graphene Electronics and Energy Conversion Catalysis. Cornell University Library, 2014, arXiv:1409.5194 S. Sarkar, R. Cort Haddon, Organometallic Complexes of Graphene and Carbon Nanotubes: Introducing New Perspectives in Atomtronics, Spintronics, High Mobility Graphene Electronics and Energy Conversion Catalysis. Cornell University Library, 2014, arXiv:1409.5194
17.
go back to reference R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechnol. 7(10), 3646–3640 (2007)CrossRef R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechnol. 7(10), 3646–3640 (2007)CrossRef
18.
go back to reference G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: Functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)CrossRef G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: Functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)CrossRef
19.
go back to reference A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)CrossRef A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)CrossRef
20.
go back to reference Y. Wang, Y. Wu, J. Xie, H. Gea, X. Hu, Multi-walled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format. Analyst 138, 5113–5120 (2013)CrossRef Y. Wang, Y. Wu, J. Xie, H. Gea, X. Hu, Multi-walled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format. Analyst 138, 5113–5120 (2013)CrossRef
21.
go back to reference Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, W. Wang, Metal–organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491–494 (2011)CrossRef Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, W. Wang, Metal–organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491–494 (2011)CrossRef
22.
go back to reference A. Okia, L. Adamsa, Z. Luod, E. Osayamena, P. Bineyb, V. Khabashesku, Functionalization of single-walled carbon nanotubes with N-[3-(trimethoxysilyl)propyl]ethylenediamine and its cobalt complex. J. Phys. Chem. Solids 69(5–6), 1194–1198 (2008)CrossRef A. Okia, L. Adamsa, Z. Luod, E. Osayamena, P. Bineyb, V. Khabashesku, Functionalization of single-walled carbon nanotubes with N-[3-(trimethoxysilyl)propyl]ethylenediamine and its cobalt complex. J. Phys. Chem. Solids 69(5–6), 1194–1198 (2008)CrossRef
23.
go back to reference M. Soleimani, M. Ghahraman Afshar, A. Sedghi, Amino-functionalization of multiwall carbon nanotubes and its use for solid phase extraction of mercury ions from fish sample. ISRN Nanotechnol, 2013, Article ID 674289, 8 pp (2013) M. Soleimani, M. Ghahraman Afshar, A. Sedghi, Amino-functionalization of multiwall carbon nanotubes and its use for solid phase extraction of mercury ions from fish sample. ISRN Nanotechnol, 2013, Article ID 674289, 8 pp (2013)
24.
go back to reference S. Hyun Yoon, J. Hoon Han, B. Kun Kim, H. Nim Choi, W.-Y. Lee, Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on platinized carbon nanotube–zirconia–Nafion composite films. Electroanalysis 22(12), 1349–1356 (2010)CrossRef S. Hyun Yoon, J. Hoon Han, B. Kun Kim, H. Nim Choi, W.-Y. Lee, Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on platinized carbon nanotube–zirconia–Nafion composite films. Electroanalysis 22(12), 1349–1356 (2010)CrossRef
25.
go back to reference Y. Tao, Z.-J. Lin, X.-M. Chen, X.-L. Huang, M. Oyama, X. Chen, X.-R. Wang, Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor. Sensors Actuators B 129, 758–763 (2008)CrossRef Y. Tao, Z.-J. Lin, X.-M. Chen, X.-L. Huang, M. Oyama, X. Chen, X.-R. Wang, Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor. Sensors Actuators B 129, 758–763 (2008)CrossRef
26.
go back to reference D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)CrossRef D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)CrossRef
27.
go back to reference R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in ruthenium 2,2′-bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)CrossRef R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in ruthenium 2,2′-bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)CrossRef
28.
go back to reference S.A. Houston, N.S. Venkataramanan, A. Suvitha, N.J. Wheate. Loading of a phenanthroline-based platinum(II) complex onto the surface of a carbon nanotube via π–π stacking. Aust. J. Chem. Article ID: CH16067 (2016) S.A. Houston, N.S. Venkataramanan, A. Suvitha, N.J. Wheate. Loading of a phenanthroline-based platinum(II) complex onto the surface of a carbon nanotube via π–π stacking. Aust. J. Chem. Article ID: CH16067 (2016)
29.
go back to reference H. Li, J. Wu, Y.A. Jeilani, C.W. Ingram, I.I. Harruna, Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex. J. Nanopart. Res. 14(847) (2012) H. Li, J. Wu, Y.A. Jeilani, C.W. Ingram, I.I. Harruna, Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex. J. Nanopart. Res. 14(847) (2012)
30.
go back to reference S.-H. Hwang, C.N. Moorefield, L. Dai, G.R. Newkome, Functional nanohybrids constructed via complexation of multiwalled carbon nanotubes with novel hexameric metallomacrocyles. Chem. Mater. 18, 4019–4024 (2006)CrossRef S.-H. Hwang, C.N. Moorefield, L. Dai, G.R. Newkome, Functional nanohybrids constructed via complexation of multiwalled carbon nanotubes with novel hexameric metallomacrocyles. Chem. Mater. 18, 4019–4024 (2006)CrossRef
31.
go back to reference R. Rajaraoa, T.H. Kimb, B. Ramachandra Bhata, Multi-walled carbon nanotube bound nickel Schiff-base complexes as reusable catalysts for oxidation of alcohols. J. Coord. Chem. 65(15), 2671–2682 (2012)CrossRef R. Rajaraoa, T.H. Kimb, B. Ramachandra Bhata, Multi-walled carbon nanotube bound nickel Schiff-base complexes as reusable catalysts for oxidation of alcohols. J. Coord. Chem. 65(15), 2671–2682 (2012)CrossRef
32.
go back to reference M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt(II) Schiff base complex. Transit. Met. Chem. 34, 605–612 (2009)CrossRef M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt(II) Schiff base complex. Transit. Met. Chem. 34, 605–612 (2009)CrossRef
33.
go back to reference M. Salavati-Niasari, M. Bazarganipour, Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci. 255(5, Part 2), 2963–2970 (2008)CrossRef M. Salavati-Niasari, M. Bazarganipour, Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci. 255(5, Part 2), 2963–2970 (2008)CrossRef
34.
go back to reference M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and liquid phase oxidation of cyclohexane with hydrogen peroxide over oxovanadium(iv) Schiff-base tetradendate complex covalently anchored to multi-wall carbon nanotubes (mwnts). Bull. Kor. Chem. Soc. 30(2), 355–362 (2009)CrossRef M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and liquid phase oxidation of cyclohexane with hydrogen peroxide over oxovanadium(iv) Schiff-base tetradendate complex covalently anchored to multi-wall carbon nanotubes (mwnts). Bull. Kor. Chem. Soc. 30(2), 355–362 (2009)CrossRef
35.
go back to reference G. Magadur, J.-S. Lauret, G. Charron, F. Bouanis, E. Norman, V. Huc, C.-S. Cojocaru, S. Gomez-Coca, E. Ruiz, T. Mallah, Charge transfer and tunable ambipolar effect induced by assembly of Cu(II) binuclear complexes on carbon nanotube field effect transistor devices. J. Am. Chem. Soc. 134(18), 7896–7901 (2012)CrossRef G. Magadur, J.-S. Lauret, G. Charron, F. Bouanis, E. Norman, V. Huc, C.-S. Cojocaru, S. Gomez-Coca, E. Ruiz, T. Mallah, Charge transfer and tunable ambipolar effect induced by assembly of Cu(II) binuclear complexes on carbon nanotube field effect transistor devices. J. Am. Chem. Soc. 134(18), 7896–7901 (2012)CrossRef
36.
go back to reference M. Navidi, B. Movassagh, S. Rayati, Multi-walled carbon nanotubes functionalized with a palladium(II)-Schiff base complex: A recyclable and heterogeneous catalyst for the copper-, phosphorous- and solvent-free synthesis of ynones, in 16th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2012 M. Navidi, B. Movassagh, S. Rayati, Multi-walled carbon nanotubes functionalized with a palladium(II)-Schiff base complex: A recyclable and heterogeneous catalyst for the copper-, phosphorous- and solvent-free synthesis of ynones, in 16th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2012
37.
go back to reference H.-J. Lee, W.S. Choib, T. Nguyenc, Y.B. Lee, H. Lee, An easy method for direct metal coordination reaction on unoxidized single-walled carbon nanotubes. Carbon 49(15), 5150–5157 (2011)CrossRef H.-J. Lee, W.S. Choib, T. Nguyenc, Y.B. Lee, H. Lee, An easy method for direct metal coordination reaction on unoxidized single-walled carbon nanotubes. Carbon 49(15), 5150–5157 (2011)CrossRef
38.
go back to reference H. Liu, Y. Cui, P. Li, Y. Zhou, X. Zhu, Y. Tang, Y. Chen, T. Lu, Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: Immobilization, direct electrochemistry and electrocatalysis. Analyst 138, 2647–2653 (2013)CrossRef H. Liu, Y. Cui, P. Li, Y. Zhou, X. Zhu, Y. Tang, Y. Chen, T. Lu, Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: Immobilization, direct electrochemistry and electrocatalysis. Analyst 138, 2647–2653 (2013)CrossRef
39.
go back to reference C. Meyer, C. Besson, R. Frielinghaus, A.-K. Saelhoff, H. Flototto, L. Houben, P. Kogerler, C.M. Schneider, Covalent functionalization of carbon nanotubes with tetramanganese complexes. Phys. Status Solidi B 249(12), 2412–2415 (2012)CrossRef C. Meyer, C. Besson, R. Frielinghaus, A.-K. Saelhoff, H. Flototto, L. Houben, P. Kogerler, C.M. Schneider, Covalent functionalization of carbon nanotubes with tetramanganese complexes. Phys. Status Solidi B 249(12), 2412–2415 (2012)CrossRef
40.
go back to reference X.M. Tu, S.L. Luo, X.B. Luo, Y.J. Zhao, L. Feng, J.H. Li, Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Sci. China Chem. 54(8), 1319–1326 (2011)CrossRef X.M. Tu, S.L. Luo, X.B. Luo, Y.J. Zhao, L. Feng, J.H. Li, Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Sci. China Chem. 54(8), 1319–1326 (2011)CrossRef
41.
go back to reference C. Yang, Y. Chai, R. Yuan, J. Guo, F. Jia, Ligand-modified multi-walled carbon nanotubes for potentiometric detection of silver. Anal. Sci. 28, 275–282 (2012)CrossRef C. Yang, Y. Chai, R. Yuan, J. Guo, F. Jia, Ligand-modified multi-walled carbon nanotubes for potentiometric detection of silver. Anal. Sci. 28, 275–282 (2012)CrossRef
42.
go back to reference C.C. Gheorghiu, B.F. Machado, C. Salinas-Martínez de Lecea, M. Gouygou, M.C. Román-Martínez, P. Serp, Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Trans. 43, 7455–7463 (2014)CrossRef C.C. Gheorghiu, B.F. Machado, C. Salinas-Martínez de Lecea, M. Gouygou, M.C. Román-Martínez, P. Serp, Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Trans. 43, 7455–7463 (2014)CrossRef
43.
go back to reference F. Frehill, J.G. Vos, S. Benrezzak, et al., Interconnecting carbon nanotubes with an inorganic metal complex. J. Am. Chem. Soc. 124, 13694–13695 (2002)CrossRef F. Frehill, J.G. Vos, S. Benrezzak, et al., Interconnecting carbon nanotubes with an inorganic metal complex. J. Am. Chem. Soc. 124, 13694–13695 (2002)CrossRef
44.
go back to reference S. Donck, J. Fize, E. Gravel, E. Doris, V. Artero, Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: Addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chem. Commun. 52, 11783–11786 (2016)CrossRef S. Donck, J. Fize, E. Gravel, E. Doris, V. Artero, Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: Addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chem. Commun. 52, 11783–11786 (2016)CrossRef
45.
go back to reference E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: A linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, Article ID 745202, 12 pp (2011). doi:https://doi.org/10.1155/2011/745202CrossRef E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: A linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, Article ID 745202, 12 pp (2011). doi:https://​doi.​org/​10.​1155/​2011/​745202CrossRef
46.
go back to reference Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes, US Patent 20130030175, 2013 Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes, US Patent 20130030175, 2013
47.
go back to reference S. Cambr, W. Wenseleers, J. Culin, S. Van Doorslaer, A. Fonseca, J.B. Nagy, E. Goovaerts, Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy. ChemPhysChem 9, 1930–1941 (2008)CrossRef S. Cambr, W. Wenseleers, J. Culin, S. Van Doorslaer, A. Fonseca, J.B. Nagy, E. Goovaerts, Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy. ChemPhysChem 9, 1930–1941 (2008)CrossRef
48.
go back to reference O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)CrossRef O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)CrossRef
49.
go back to reference L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)CrossRef L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)CrossRef
50.
go back to reference D.M. Guldi, G.M.A. Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRef D.M. Guldi, G.M.A. Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRef
51.
go back to reference I. Ruiz-Tagle, W. Orellana, Iron porphyrin attached to single-walled carbon nanotubes: Electronic and dynamical properties from ab initio calculations. Phys. Rev. B 82, 115406 (2010)CrossRef I. Ruiz-Tagle, W. Orellana, Iron porphyrin attached to single-walled carbon nanotubes: Electronic and dynamical properties from ab initio calculations. Phys. Rev. B 82, 115406 (2010)CrossRef
52.
go back to reference J. Yu, S. Mathew, B.S. Flavel, J.S. Quinton, M.R. Johnston, J.G. Shapter, Mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays towards multibit information storage, in International Conference on Nanoscience and Nanotechnology, ICONN 2008, pp. 176–179, 2008 J. Yu, S. Mathew, B.S. Flavel, J.S. Quinton, M.R. Johnston, J.G. Shapter, Mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays towards multibit information storage, in International Conference on Nanoscience and Nanotechnology, ICONN 2008, pp. 176–179, 2008
53.
go back to reference D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)CrossRef D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)CrossRef
54.
go back to reference M. Mananghaya, Theoretical investigation of transition metal-incorporated porphyrin-induced carbon nanotubes: A potential hydrogen storage material. Int. J. Sci. Eng. Res. 4(1), 4 pp (2013) M. Mananghaya, Theoretical investigation of transition metal-incorporated porphyrin-induced carbon nanotubes: A potential hydrogen storage material. Int. J. Sci. Eng. Res. 4(1), 4 pp (2013)
55.
go back to reference D. Hyun Lee, W. Jun Lee, W. Jong Lee, S. Ouk Kim, Y.-H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 106, 175502, 4 pp. (2011) D. Hyun Lee, W. Jun Lee, W. Jong Lee, S. Ouk Kim, Y.-H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 106, 175502, 4 pp. (2011)
56.
go back to reference G. de la Torre, G. Bottari, T. Torres, Phthalocyanines and subphthalocyanines: Perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv. Energy Mater. 7(10), 1601700 (2017)CrossRef G. de la Torre, G. Bottari, T. Torres, Phthalocyanines and subphthalocyanines: Perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv. Energy Mater. 7(10), 1601700 (2017)CrossRef
57.
go back to reference Y. Gao, S. Li, X. Wang, et al., Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 164(6), A1140–A1147 (2017)CrossRef Y. Gao, S. Li, X. Wang, et al., Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 164(6), A1140–A1147 (2017)CrossRef
58.
go back to reference A.Y. Tolbin, V.N. Khabashesku, L.G. Tomilova, Synthesis of phthalocyanine tert-butyl ligand conjugates with fluorinecontaining single-walled carbon nanotubes having mobile ether bonds. Mendeleev Commun. 22, 59–61 (2012)CrossRef A.Y. Tolbin, V.N. Khabashesku, L.G. Tomilova, Synthesis of phthalocyanine tert-butyl ligand conjugates with fluorinecontaining single-walled carbon nanotubes having mobile ether bonds. Mendeleev Commun. 22, 59–61 (2012)CrossRef
59.
go back to reference I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int. J. Electrochem. Sci. 8, 1057–1066 (2013) I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int. J. Electrochem. Sci. 8, 1057–1066 (2013)
60.
go back to reference I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media. J. Nanosci. Nanotechnol. 13(1), 621–627 (2013)CrossRef I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media. J. Nanosci. Nanotechnol. 13(1), 621–627 (2013)CrossRef
61.
go back to reference W. Orellana, Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study. Chem. Phys. Lett. 541, 81–84 (2012)CrossRef W. Orellana, Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study. Chem. Phys. Lett. 541, 81–84 (2012)CrossRef
62.
go back to reference Y. Yuan, B. Zhao, Y. Jeon, S. Zhong, S. Zhou, S. Kim, Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresourse Technol. 102(10), 5849–5854 (2011)CrossRef Y. Yuan, B. Zhao, Y. Jeon, S. Zhong, S. Zhou, S. Kim, Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresourse Technol. 102(10), 5849–5854 (2011)CrossRef
63.
go back to reference G. Dong, M. Huang, L. Guan, Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys. 14, 2557–2559 (2012)CrossRef G. Dong, M. Huang, L. Guan, Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys. 14, 2557–2559 (2012)CrossRef
64.
go back to reference P. d’Ambrosio, M. Carchesio, N. d’Alessandro, G. de la Torre, T. Torres, Linking Pd(II) and Ru(II) phthalocyanines to single-walled carbon nanotubes. Dalton Trans. 43, 7473–7747 (2014)CrossRef P. d’Ambrosio, M. Carchesio, N. d’Alessandro, G. de la Torre, T. Torres, Linking Pd(II) and Ru(II) phthalocyanines to single-walled carbon nanotubes. Dalton Trans. 43, 7473–7747 (2014)CrossRef
65.
go back to reference Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E. Siu-Wai Kong, Y. Zhang, Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties. J. Mater. Chem. 21, 3779–3787 (2011)CrossRef Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E. Siu-Wai Kong, Y. Zhang, Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties. J. Mater. Chem. 21, 3779–3787 (2011)CrossRef
66.
go back to reference L. Zhang, H. Yu, L. Liu, L. Wang, Study on the preparation of multi-walled carbon nanotube/phthalocyanine composites and their optical limiting effects. J. Compos. Mater. 48(8), 959–967 (2014)CrossRef L. Zhang, H. Yu, L. Liu, L. Wang, Study on the preparation of multi-walled carbon nanotube/phthalocyanine composites and their optical limiting effects. J. Compos. Mater. 48(8), 959–967 (2014)CrossRef
67.
go back to reference J. Bartelmess, B. Ballesteros, G. de la Torre, D. Kiessling, S. Campidelli, M. Prato, T. Torres, D.M. Guldi, Phthalocyanine−pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J. Am. Chem. Soc. 132(45), 16202–16211 (2010)CrossRef J. Bartelmess, B. Ballesteros, G. de la Torre, D. Kiessling, S. Campidelli, M. Prato, T. Torres, D.M. Guldi, Phthalocyanine−pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J. Am. Chem. Soc. 132(45), 16202–16211 (2010)CrossRef
68.
go back to reference R.O. Ogbodu, E. Antunesa, T. Nyokong, Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Trans. 42, 10769–10777 (2013)CrossRef R.O. Ogbodu, E. Antunesa, T. Nyokong, Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Trans. 42, 10769–10777 (2013)CrossRef
69.
go back to reference K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)CrossRef K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)CrossRef
70.
go back to reference S. Park, S. Woong Yoon, K.-B. Lee, D. Jin Kim, Y. Hwan Jung, Y. Do, H.-j. Paik, I.S. Choi, Carbon nanotubes as a ligand in Cp2ZrCl2-based ethylene polymerization. Macromol. Rapid Commun. 27, 47–50 (2006)CrossRef S. Park, S. Woong Yoon, K.-B. Lee, D. Jin Kim, Y. Hwan Jung, Y. Do, H.-j. Paik, I.S. Choi, Carbon nanotubes as a ligand in Cp2ZrCl2-based ethylene polymerization. Macromol. Rapid Commun. 27, 47–50 (2006)CrossRef
71.
go back to reference D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)CrossRef D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)CrossRef
72.
go back to reference A.S. Lobach, R.G. Gasanov, E.D. Obraztsova, A.N. Shchegolikhin, V.I. Sokolov, Sidewall functionalization of single-walled carbon nanotubes by organometallic chromium-centered free radicals. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 287–297 (2005)CrossRef A.S. Lobach, R.G. Gasanov, E.D. Obraztsova, A.N. Shchegolikhin, V.I. Sokolov, Sidewall functionalization of single-walled carbon nanotubes by organometallic chromium-centered free radicals. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 287–297 (2005)CrossRef
73.
go back to reference Z. Zhang, C. Heath Turner, Structural and electronic properties of carbon nanotubes and graphenes functionalized with cyclopentadienyl–transition metal complexes: A DFT study. J. Phys. Chem. C 117(17), 8758–8766 (2013)CrossRef Z. Zhang, C. Heath Turner, Structural and electronic properties of carbon nanotubes and graphenes functionalized with cyclopentadienyl–transition metal complexes: A DFT study. J. Phys. Chem. C 117(17), 8758–8766 (2013)CrossRef
74.
go back to reference A. Chernov, M. Havlicek, W. Jantsch, M.H. Rümmeli, A. Bachmatiuk, K. Yanagi, H. Peterlik, H. Kataura, F. Sauerzopf, R. Resel, F. Simon, H. Kuzmany, Ferromagnetic decoration in metal–semiconductor separated and ferrocene functionalized single-walled carbon nanotubes. Phys. Status Solidi B 249(12), 2323–2327 (2012)CrossRef A. Chernov, M. Havlicek, W. Jantsch, M.H. Rümmeli, A. Bachmatiuk, K. Yanagi, H. Peterlik, H. Kataura, F. Sauerzopf, R. Resel, F. Simon, H. Kuzmany, Ferromagnetic decoration in metal–semiconductor separated and ferrocene functionalized single-walled carbon nanotubes. Phys. Status Solidi B 249(12), 2323–2327 (2012)CrossRef
75.
go back to reference G. Zhang, S. Peng, Y. Shang, Z.-D. Yang, X. Cheng Zeng, Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. J. Mater. Chem. C 2, 10017–10030 (2014)CrossRef G. Zhang, S. Peng, Y. Shang, Z.-D. Yang, X. Cheng Zeng, Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. J. Mater. Chem. C 2, 10017–10030 (2014)CrossRef
76.
go back to reference X.-J. Huang, H.-S. Im, D.-H. Lee, H.-S. Kim, Y.-K. Choi, Ferrocene functionalized single-walled carbon nanotube bundles. Hybrid interdigitated construction film for L-glutamate detection. J. Phys. Chem. C 111, 1200–1206 (2007)CrossRef X.-J. Huang, H.-S. Im, D.-H. Lee, H.-S. Kim, Y.-K. Choi, Ferrocene functionalized single-walled carbon nanotube bundles. Hybrid interdigitated construction film for L-glutamate detection. J. Phys. Chem. C 111, 1200–1206 (2007)CrossRef
77.
go back to reference N. Allali, V. Urbanova, V. Mamane, J. Waldbock, M. Etienne, M. Mallet, X. Devaux, B. Vigolo, Y. Fort, A. Walcarius, M. Noel, A.V. Soldatov, E. McRae, M. Dossot, Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices. Phys. Status Solidi B 249(12), 2349–2352 (2012)CrossRef N. Allali, V. Urbanova, V. Mamane, J. Waldbock, M. Etienne, M. Mallet, X. Devaux, B. Vigolo, Y. Fort, A. Walcarius, M. Noel, A.V. Soldatov, E. McRae, M. Dossot, Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices. Phys. Status Solidi B 249(12), 2349–2352 (2012)CrossRef
78.
go back to reference P. Singh, C. Menard-Moyon, J. Kumar, B. Fabre, S. Verma, A. Bianco, Nucleobase-pairing triggers the self-assembly of uracil-ferrocene on adenine functionalized multi-walled carbon nanotubes. Carbon 50, 3170–3177 (2012)CrossRef P. Singh, C. Menard-Moyon, J. Kumar, B. Fabre, S. Verma, A. Bianco, Nucleobase-pairing triggers the self-assembly of uracil-ferrocene on adenine functionalized multi-walled carbon nanotubes. Carbon 50, 3170–3177 (2012)CrossRef
79.
go back to reference A. Le Goff, F. Moggia, N. Debou, P. Jegou, V. Artero, M. Fontecave, B. Jousselme, S. Palacin, Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and p-stacking interactions and their relevance to glucose bio-sensing. J. Electroanal. Chem. 641, 57–63 (2010)CrossRef A. Le Goff, F. Moggia, N. Debou, P. Jegou, V. Artero, M. Fontecave, B. Jousselme, S. Palacin, Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and p-stacking interactions and their relevance to glucose bio-sensing. J. Electroanal. Chem. 641, 57–63 (2010)CrossRef
80.
go back to reference S. Banerjee, S.S. Wong, Functionalization of carbon nanotubes with a metal-containing molecular complex. Nano Lett. 2(1), 49–53 (2002)CrossRef S. Banerjee, S.S. Wong, Functionalization of carbon nanotubes with a metal-containing molecular complex. Nano Lett. 2(1), 49–53 (2002)CrossRef
81.
go back to reference F. Mercuri, A. Sgamellotti, Functionalization of carbon nanotubes with Vaska’s complex: A theoretical approach. J. Phys. Chem. B 110, 15291–15294 (2006)CrossRef F. Mercuri, A. Sgamellotti, Functionalization of carbon nanotubes with Vaska’s complex: A theoretical approach. J. Phys. Chem. B 110, 15291–15294 (2006)CrossRef
82.
go back to reference J.-P. Lellouche, M. Piran, L. Shahar, J. Grinblat, C. Pirlot, A reversible decoration of multi-walled carbon nanotubes (MWCNTs) by acyclic η4-(1E,3E)-dienyl-Fe(CO)3 complexes. J. Mater. Chem. 18, 1093–1099 (2008)CrossRef J.-P. Lellouche, M. Piran, L. Shahar, J. Grinblat, C. Pirlot, A reversible decoration of multi-walled carbon nanotubes (MWCNTs) by acyclic η4-(1E,3E)-dienyl-Fe(CO)3 complexes. J. Mater. Chem. 18, 1093–1099 (2008)CrossRef
83.
go back to reference L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34, 2086–2097 (2015)CrossRef L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34, 2086–2097 (2015)CrossRef
84.
go back to reference I. Kalinina, E. Bekyarova, S. Sarkar, F. Wang, M.E. Itkis, X. Tian, S. Niyogi, N. Jha, R.C. Haddon, Hexahapto-metal complexes of single-walled carbon nanotubes. Macromol. Chem. Phys. 213, 1001–1019 (2012)CrossRef I. Kalinina, E. Bekyarova, S. Sarkar, F. Wang, M.E. Itkis, X. Tian, S. Niyogi, N. Jha, R.C. Haddon, Hexahapto-metal complexes of single-walled carbon nanotubes. Macromol. Chem. Phys. 213, 1001–1019 (2012)CrossRef
85.
go back to reference X. Tian, M.L. Moser, A. Pekker, S. Sarkar, J. Ramirez, E. Bekyarova, M.E. Itkis, R.C. Haddon, Effect of atomic interconnects on percolation in single-walled carbon nanotube thin film networks. Nano Lett. 14, 3930–3937 (2014)CrossRef X. Tian, M.L. Moser, A. Pekker, S. Sarkar, J. Ramirez, E. Bekyarova, M.E. Itkis, R.C. Haddon, Effect of atomic interconnects on percolation in single-walled carbon nanotube thin film networks. Nano Lett. 14, 3930–3937 (2014)CrossRef
86.
go back to reference S. Sarkar, S. Niyogi, E. Bekyarova, R.C. Haddon, Organometallic chemistry of extended periodic π-electron systems: Hexahapto-chromium complexes of graphene and single-walled carbon nanotubes. Chem. Sci. 2, 1326–1333 (2011)CrossRef S. Sarkar, S. Niyogi, E. Bekyarova, R.C. Haddon, Organometallic chemistry of extended periodic π-electron systems: Hexahapto-chromium complexes of graphene and single-walled carbon nanotubes. Chem. Sci. 2, 1326–1333 (2011)CrossRef
87.
go back to reference R.L. McSweeney, T.W. Chamberlain, E.S. Davies, A.N. Khlobystov, Single-walled carbon nanotubes as nanoelectrode and nano-reactor to control the pathways of a redox reaction. Chem. Commun. 50, 14338–14340 (2014)CrossRef R.L. McSweeney, T.W. Chamberlain, E.S. Davies, A.N. Khlobystov, Single-walled carbon nanotubes as nanoelectrode and nano-reactor to control the pathways of a redox reaction. Chem. Commun. 50, 14338–14340 (2014)CrossRef
88.
go back to reference P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103, 9 pp (2011)CrossRef P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103, 9 pp (2011)CrossRef
89.
go back to reference E.L. Sceats, J.C. Green, Charge transfer composites of bis(cyclopentadienyl) and bis(benzene) transition metal complexes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 75(24), 245441 (2007)CrossRef E.L. Sceats, J.C. Green, Charge transfer composites of bis(cyclopentadienyl) and bis(benzene) transition metal complexes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 75(24), 245441 (2007)CrossRef
90.
go back to reference M. Koleini, M. Paulsson, M. Brandbyge, Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes. Phys. Rev. Lett. 98, 197202, 4 pp (2007) M. Koleini, M. Paulsson, M. Brandbyge, Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes. Phys. Rev. Lett. 98, 197202, 4 pp (2007)
91.
go back to reference C.H. Li, A.M.C. Ng, C.S.K. Mak, A.B. Djurišić, W.K. Chan, Ruthenium complex containing block copolymer for the enhancement of carbon nanotube photoconductivity. ACS Appl. Mater. Interfaces 4(1), 74–80 (2012)CrossRef C.H. Li, A.M.C. Ng, C.S.K. Mak, A.B. Djurišić, W.K. Chan, Ruthenium complex containing block copolymer for the enhancement of carbon nanotube photoconductivity. ACS Appl. Mater. Interfaces 4(1), 74–80 (2012)CrossRef
92.
go back to reference E.W. McQueen, J.I. Golsmith, Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene-pendant transition metal complexes. J. Am. Chem. Soc. 131(48), 17554–17556 (2009)CrossRef E.W. McQueen, J.I. Golsmith, Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene-pendant transition metal complexes. J. Am. Chem. Soc. 131(48), 17554–17556 (2009)CrossRef
93.
go back to reference P.D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero, Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. Engl. 50(6), 1371–1374 (2011)CrossRef P.D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero, Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. Engl. 50(6), 1371–1374 (2011)CrossRef
94.
go back to reference C. Vriamont, M. Devillers, O. Riant, S. Hermans, Catalysis with gold complexes immobilised on carbon nanotubes by π–π stacking interactions: Heterogeneous catalysis versus the boomerang effect. Chem. Eur. J. 19, 12009–12017 (2013)CrossRef C. Vriamont, M. Devillers, O. Riant, S. Hermans, Catalysis with gold complexes immobilised on carbon nanotubes by π–π stacking interactions: Heterogeneous catalysis versus the boomerang effect. Chem. Eur. J. 19, 12009–12017 (2013)CrossRef
95.
go back to reference A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29(27), 8736–8742 (2013)CrossRef A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29(27), 8736–8742 (2013)CrossRef
96.
go back to reference S.-N. Ding, D. Shan, S. Cosnier, A. Le Goff, Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: Electrochemical and electrogenerated chemiluminescence properties. Chem. Eur. J. 18(37), 11564–11568 (2012)CrossRef S.-N. Ding, D. Shan, S. Cosnier, A. Le Goff, Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: Electrochemical and electrogenerated chemiluminescence properties. Chem. Eur. J. 18(37), 11564–11568 (2012)CrossRef
97.
go back to reference M. Blanco, P. Álvarez, C. Blanco, M.V. Jiménez, J. FernÁndez-Tornos, J.J. Pérez-Torrente, L.A. Oro, R. Menéndez, Enhanced hydrogen-transfer catalytic activity of iridium N-heterocyclic carbenes by covalent attachment on carbon nanotubes. ACS Catal. 3, 1307–1317 (2013)CrossRef M. Blanco, P. Álvarez, C. Blanco, M.V. Jiménez, J. FernÁndez-Tornos, J.J. Pérez-Torrente, L.A. Oro, R. Menéndez, Enhanced hydrogen-transfer catalytic activity of iridium N-heterocyclic carbenes by covalent attachment on carbon nanotubes. ACS Catal. 3, 1307–1317 (2013)CrossRef
98.
go back to reference G. Liang, L. Zheng, S. Bao, B. Fei, H. Gao, F. Zhu, Q. Wu, Growing tiny flowers of organometallic polymers along carbon nanotubes. Macromolecules 48, 4115–4121 (2015)CrossRef G. Liang, L. Zheng, S. Bao, B. Fei, H. Gao, F. Zhu, Q. Wu, Growing tiny flowers of organometallic polymers along carbon nanotubes. Macromolecules 48, 4115–4121 (2015)CrossRef
99.
go back to reference S.A.V. Jannuzzi, B. Martins, L.E.S.C. Huamanía, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017) S.A.V. Jannuzzi, B. Martins, L.E.S.C. Huamanía, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017)
100.
go back to reference H. Cui, K. Zhang, Y. Zhang, Y. Sun, J. Wang, W. Zhang, J. Luong, Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens. Bioelectron. 46, 113–118 (2013)CrossRef H. Cui, K. Zhang, Y. Zhang, Y. Sun, J. Wang, W. Zhang, J. Luong, Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens. Bioelectron. 46, 113–118 (2013)CrossRef
101.
go back to reference Y. Song, D. Su, Y. Shen, C. Gong, Y. Songa, L. Wang, Nitrogen-doped carbon foam as an efficient enzymatic biosensing platform for glucose sensing. Anal. Methods 8, 4547–4553 (2016)CrossRef Y. Song, D. Su, Y. Shen, C. Gong, Y. Songa, L. Wang, Nitrogen-doped carbon foam as an efficient enzymatic biosensing platform for glucose sensing. Anal. Methods 8, 4547–4553 (2016)CrossRef
102.
go back to reference T.W. Chamberlain, J.C. Meyer, J. Biskupek, et al., Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 3, 732–737 (2011)CrossRef T.W. Chamberlain, J.C. Meyer, J. Biskupek, et al., Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 3, 732–737 (2011)CrossRef
103.
go back to reference V. Strauss, A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)CrossRef V. Strauss, A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)CrossRef
104.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
105.
106.
go back to reference P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 ppCrossRef P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 ppCrossRef
107.
go back to reference W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 pp W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 pp
108.
go back to reference N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 pp N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 pp
109.
go back to reference B.J. Schultz, R.V. Dennis, V. Lee, S. Banerjee, An electronic structure perspective of graphene interfaces. Nanoscale 6, 3444–3466 (2014)CrossRef B.J. Schultz, R.V. Dennis, V. Lee, S. Banerjee, An electronic structure perspective of graphene interfaces. Nanoscale 6, 3444–3466 (2014)CrossRef
110.
go back to reference B.J. Schultz, C. Jaye, P.D. Lysaght, D.A. Fischer, D. Prendergast, S. Banerjee, On chemical bonding and electronic structure of graphene–metal contacts. Chem. Sci. 4, 494–502 (2013)CrossRef B.J. Schultz, C. Jaye, P.D. Lysaght, D.A. Fischer, D. Prendergast, S. Banerjee, On chemical bonding and electronic structure of graphene–metal contacts. Chem. Sci. 4, 494–502 (2013)CrossRef
111.
go back to reference T. Abtew, B.-C. Shih, S. Banerjee, P. Zhang, Graphene-ferromagnet interfaces: Hybridization, magnetization and charge transfer. Nanoscale 5, 1902–1909 (2013)CrossRef T. Abtew, B.-C. Shih, S. Banerjee, P. Zhang, Graphene-ferromagnet interfaces: Hybridization, magnetization and charge transfer. Nanoscale 5, 1902–1909 (2013)CrossRef
112.
go back to reference J. Wintterlin, M.-L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)CrossRef J. Wintterlin, M.-L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)CrossRef
113.
go back to reference G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)CrossRef G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)CrossRef
114.
go back to reference R.V. Dennis, V. Patil, J.L. Andrews, J.P. Aldinger, G.D. Yadav, S. Banerjee, Hybrid nanostructured coatings for corrosion protection of base metals: A sustainability perspective. Mater. Res. Express 2, 032001/1–23 (2015)CrossRef R.V. Dennis, V. Patil, J.L. Andrews, J.P. Aldinger, G.D. Yadav, S. Banerjee, Hybrid nanostructured coatings for corrosion protection of base metals: A sustainability perspective. Mater. Res. Express 2, 032001/1–23 (2015)CrossRef
115.
go back to reference D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef
116.
go back to reference L.R. DeJesus, R.V. Dennis, S.W. Depner, C. Jaye, D.A. Fischer, S. Banerjee, Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene oxide. J. Phys. Chem. Lett. 4, 3144–3151 (2013)CrossRef L.R. DeJesus, R.V. Dennis, S.W. Depner, C. Jaye, D.A. Fischer, S. Banerjee, Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene oxide. J. Phys. Chem. Lett. 4, 3144–3151 (2013)CrossRef
117.
go back to reference A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998)CrossRef A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998)CrossRef
118.
go back to reference W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRef W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRef
119.
go back to reference W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. Jin An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008)CrossRef W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. Jin An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008)CrossRef
120.
go back to reference V. Georgakilas (ed.), Functionalization of Graphene, 1st edn. (Wiley-VCH, Weinheim, 2014), 424 pp V. Georgakilas (ed.), Functionalization of Graphene, 1st edn. (Wiley-VCH, Weinheim, 2014), 424 pp
121.
go back to reference A. J. L. Pombeiro (ed.), Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, 1st edn. (Wiley, Hoboken, 2013), 736 pp A. J. L. Pombeiro (ed.), Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, 1st edn. (Wiley, Hoboken, 2013), 736 pp
122.
go back to reference C.N.R. Rao, U. Maitra, H.S.S. Ramakrishna Matte, Synthesis, characterization, and selected properties of graphene, in Graphene: Synthesis, Properties, and Phenomena, ed. by C. N. R. Rao, A. K. Sood, 1st edn., (Wiley-VCH Verlag, Weinheim, 2013) C.N.R. Rao, U. Maitra, H.S.S. Ramakrishna Matte, Synthesis, characterization, and selected properties of graphene, in Graphene: Synthesis, Properties, and Phenomena, ed. by C. N. R. Rao, A. K. Sood, 1st edn., (Wiley-VCH Verlag, Weinheim, 2013)
123.
go back to reference S. Sarkar, E. Bekyarova, R.C. Haddon, Chapter 9. Organometallic chemistry of carbon nanotubes and graphene, in Carbon Nanotubes and Graphene, ed. by K. Tanaka, S. Iijima, (Elsevier, Amsterdam, 2014)CrossRef S. Sarkar, E. Bekyarova, R.C. Haddon, Chapter 9. Organometallic chemistry of carbon nanotubes and graphene, in Carbon Nanotubes and Graphene, ed. by K. Tanaka, S. Iijima, (Elsevier, Amsterdam, 2014)CrossRef
124.
go back to reference M.J. Lu, J. Li, X.Y. Yang, Y. Xu, X.A. Zhang, J. Yang, H. Hu, X.B. Wang, Applications of graphene-based materials in environmental protection and detection. Chin. Sci. Bull. 58(22), 2698–2710 (2013)CrossRef M.J. Lu, J. Li, X.Y. Yang, Y. Xu, X.A. Zhang, J. Yang, H. Hu, X.B. Wang, Applications of graphene-based materials in environmental protection and detection. Chin. Sci. Bull. 58(22), 2698–2710 (2013)CrossRef
125.
go back to reference C. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46(10), 2275–2285 (2013)CrossRef C. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46(10), 2275–2285 (2013)CrossRef
126.
go back to reference S.P. Lonkar, Y.S. Deshmukh, A.A. Abdala, Recent advances in chemical modifications of graphene. Nano Res. 8(4), 1039–1074 (2015)CrossRef S.P. Lonkar, Y.S. Deshmukh, A.A. Abdala, Recent advances in chemical modifications of graphene. Nano Res. 8(4), 1039–1074 (2015)CrossRef
127.
go back to reference I. Ahmed, S.H. Jhung, Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 17(3), 136–146 (2014)CrossRef I. Ahmed, S.H. Jhung, Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 17(3), 136–146 (2014)CrossRef
128.
go back to reference V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRef V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRef
129.
go back to reference J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114(12), 6323–6348 (2014)CrossRef J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114(12), 6323–6348 (2014)CrossRef
130.
go back to reference B. Garg, T. Bisht, Y.-C. Ling, Graphene-based nanomaterials as heterogeneous acid catalysts: A comprehensive perspective. Molecules 19, 14582–14614 (2014)CrossRef B. Garg, T. Bisht, Y.-C. Ling, Graphene-based nanomaterials as heterogeneous acid catalysts: A comprehensive perspective. Molecules 19, 14582–14614 (2014)CrossRef
131.
go back to reference L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34(11), 2086–2097 (2015)CrossRef L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34(11), 2086–2097 (2015)CrossRef
132.
go back to reference M. Arab Fashapoyeh, M. Mirzaei, H. Eshtiagh-Hosseini, Recent advances in crystal engineering from nanoscience views: A brief review. Nanochem. Res. 2(1), 1–7 (2017) M. Arab Fashapoyeh, M. Mirzaei, H. Eshtiagh-Hosseini, Recent advances in crystal engineering from nanoscience views: A brief review. Nanochem. Res. 2(1), 1–7 (2017)
133.
go back to reference Y. Wang, X. Ke, X. Zhou, J. Li, J. Ma, Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry. J. Saudi Chem. Soc. 20(1), S145–S152 (2016)CrossRef Y. Wang, X. Ke, X. Zhou, J. Li, J. Ma, Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry. J. Saudi Chem. Soc. 20(1), S145–S152 (2016)CrossRef
134.
go back to reference S. Hou, Chelating agent modified graphene oxides, methods of preparation and use, US 2012/0330044 A1, 2012 S. Hou, Chelating agent modified graphene oxides, methods of preparation and use, US 2012/0330044 A1, 2012
135.
go back to reference Y. Yamada, Y. Suzuki, H. Yasuda, S. Uchizawa, K. Hirose-Takai, Y. Sato, K. Suenaga, S. Sato, Functionalized graphene sheets coordinating metal cations. Carbon 75, 81–94 (2014)CrossRef Y. Yamada, Y. Suzuki, H. Yasuda, S. Uchizawa, K. Hirose-Takai, Y. Sato, K. Suenaga, S. Sato, Functionalized graphene sheets coordinating metal cations. Carbon 75, 81–94 (2014)CrossRef
136.
go back to reference I.L. Laure, S.V. Tkachev, E.Y. Buslaeva, E.V. Fatushina, S.P. Gubin, The coordination chemistry of graphene oxide: Interactions with metal ions in water. Russ. J. Coord. Chem. 39(7), 487–492 (2013)CrossRef I.L. Laure, S.V. Tkachev, E.Y. Buslaeva, E.V. Fatushina, S.P. Gubin, The coordination chemistry of graphene oxide: Interactions with metal ions in water. Russ. J. Coord. Chem. 39(7), 487–492 (2013)CrossRef
137.
go back to reference P. Dev, T.L. Reinecke, Stabilizing graphene-based organometallic sandwich structures through defect engineering. Phys. Rev. B 91, 035436 (2015)CrossRef P. Dev, T.L. Reinecke, Stabilizing graphene-based organometallic sandwich structures through defect engineering. Phys. Rev. B 91, 035436 (2015)CrossRef
138.
go back to reference Q. Zhao, Y. Zhu, Z. Sun, Y. Li, G. Zhang, F. Zhang, X. Fan, Combining palladium complex and organic amine on graphene oxide for promoted Tsuji–Trost allylation. J. Mater. Chem. A 3, 2609–2616 (2015)CrossRef Q. Zhao, Y. Zhu, Z. Sun, Y. Li, G. Zhang, F. Zhang, X. Fan, Combining palladium complex and organic amine on graphene oxide for promoted Tsuji–Trost allylation. J. Mater. Chem. A 3, 2609–2616 (2015)CrossRef
139.
go back to reference R.C. Haddon, S. Sarkar, S. Niyogi, E. Bekyarova, M.E. Itkis, X. Tian, F. Wang, Organometallic chemistry of extended periodic π-electron systems, US 20130202515 A1, 2013 R.C. Haddon, S. Sarkar, S. Niyogi, E. Bekyarova, M.E. Itkis, X. Tian, F. Wang, Organometallic chemistry of extended periodic π-electron systems, US 20130202515 A1, 2013
140.
go back to reference S. Sarkar, H. Zhang, J.-W. Huang, F. Wang, E. Bekyarova, C.N. Lau, R.C. Haddon, Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 25(8), 1131–1136 (2013)CrossRef S. Sarkar, H. Zhang, J.-W. Huang, F. Wang, E. Bekyarova, C.N. Lau, R.C. Haddon, Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 25(8), 1131–1136 (2013)CrossRef
141.
go back to reference S.M. Avdoshenko, I.N. Ioffe, G. Cuniberti, L. Dunsch, A.A. Popov, Organometallic complexes of graphene: Toward atomic spintronics using a graphene web. ACS Nano 5(12), 9939–9949 (2011)CrossRef S.M. Avdoshenko, I.N. Ioffe, G. Cuniberti, L. Dunsch, A.A. Popov, Organometallic complexes of graphene: Toward atomic spintronics using a graphene web. ACS Nano 5(12), 9939–9949 (2011)CrossRef
142.
go back to reference M. Chen, X. Tian, W. Li, E. Bekyarova, G. Li, M. Moser, R.C. Haddon, Application of organometallic chemistry to the electrical interconnection of graphene nanoplatelets. Chem. Mater. 28(7), 2260–2266 (2016)CrossRef M. Chen, X. Tian, W. Li, E. Bekyarova, G. Li, M. Moser, R.C. Haddon, Application of organometallic chemistry to the electrical interconnection of graphene nanoplatelets. Chem. Mater. 28(7), 2260–2266 (2016)CrossRef
143.
go back to reference J. Dai, Y. Zhao, X. Wu, X. Cheng Zeng, J. Yang, Organometallic hexahapto-functionalized graphene: Band gap engineering with minute distortion to the planar structure. J. Phys. Chem. C 117, 22156–22161 (2013)CrossRef J. Dai, Y. Zhao, X. Wu, X. Cheng Zeng, J. Yang, Organometallic hexahapto-functionalized graphene: Band gap engineering with minute distortion to the planar structure. J. Phys. Chem. C 117, 22156–22161 (2013)CrossRef
144.
go back to reference P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103 (2011)CrossRef P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103 (2011)CrossRef
145.
go back to reference Z. Zhang, C.H. Turner, Redox properties of graphenes functionalized with cyclopentadiene–transition metal complexes: A potential redox-active material. J. Phys. Chem. C 118(42), 24633–24640 (2014)CrossRef Z. Zhang, C.H. Turner, Redox properties of graphenes functionalized with cyclopentadiene–transition metal complexes: A potential redox-active material. J. Phys. Chem. C 118(42), 24633–24640 (2014)CrossRef
146.
go back to reference L. Fan, Q. Zhang, K. Wang, F. Li, L. Niu, Ferrocene functionalized graphene: Preparation, characterization and efficient electron transfer toward sensors of H2O2. J. Mater. Chem. 22, 6165–6170 (2012)CrossRef L. Fan, Q. Zhang, K. Wang, F. Li, L. Niu, Ferrocene functionalized graphene: Preparation, characterization and efficient electron transfer toward sensors of H2O2. J. Mater. Chem. 22, 6165–6170 (2012)CrossRef
147.
go back to reference B. Choi, J. Lee, S. Lee, J.-H. Ko, K.-S. Lee, J. Oh, J. Han, Y.-H. Kim, I.S. Choi, S. Park, Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol. Rapid Commun. 34, 533–538 (2013)CrossRef B. Choi, J. Lee, S. Lee, J.-H. Ko, K.-S. Lee, J. Oh, J. Han, Y.-H. Kim, I.S. Choi, S. Park, Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol. Rapid Commun. 34, 533–538 (2013)CrossRef
148.
go back to reference N. Xia, L. Liu, Z. Sun, B. Zhou, Nanocomposites of graphene with ferrocene or hemin: Preparation and application in electrochemical sensing. J. Nanomater. 2015, Article ID 892674, 9 pp (2015) N. Xia, L. Liu, Z. Sun, B. Zhou, Nanocomposites of graphene with ferrocene or hemin: Preparation and application in electrochemical sensing. J. Nanomater. 2015, Article ID 892674, 9 pp (2015)
149.
go back to reference P. Wan, S. Yin, L. Liu, et al., Graphene carrier for magneto-controllable bioelectrocatalysis. Small 10(4), 647–652 (2014)CrossRef P. Wan, S. Yin, L. Liu, et al., Graphene carrier for magneto-controllable bioelectrocatalysis. Small 10(4), 647–652 (2014)CrossRef
150.
go back to reference S. Sabater, J.A. Mata, E. Peris, Immobilization of pyrene-tagged palladium and ruthenium complexes onto reduced graphene oxide: An efficient and highly recyclable catalyst for hydrodefluorination. Organometallics 34, 1186–1190 (2015)CrossRef S. Sabater, J.A. Mata, E. Peris, Immobilization of pyrene-tagged palladium and ruthenium complexes onto reduced graphene oxide: An efficient and highly recyclable catalyst for hydrodefluorination. Organometallics 34, 1186–1190 (2015)CrossRef
151.
go back to reference A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted Tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29, 8736–8742 (2013)CrossRef A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted Tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29, 8736–8742 (2013)CrossRef
152.
go back to reference S. Sabater, J.A. Mata, E. Peris, Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 4, 2038–2047 (2014)CrossRef S. Sabater, J.A. Mata, E. Peris, Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 4, 2038–2047 (2014)CrossRef
153.
go back to reference G. Ren, Y.-n. Li, Z. Guo, G. Xiao, Y. Zhu, L. Dai, L. Jiang, A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Res. 8(11), 3461–3471 (2015)CrossRef G. Ren, Y.-n. Li, Z. Guo, G. Xiao, Y. Zhu, L. Dai, L. Jiang, A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Res. 8(11), 3461–3471 (2015)CrossRef
154.
go back to reference X. Zhou, T. Zhang, C.W. Abney, Z. Li, W. Lin, Graphene-immobilized monomeric bipyridine-Mx+ (Mx+ = Fe3+, Co2+, Ni2+, or Cu2+) complexes for electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 6, 18475–18479 (2014)CrossRef X. Zhou, T. Zhang, C.W. Abney, Z. Li, W. Lin, Graphene-immobilized monomeric bipyridine-Mx+ (Mx+ = Fe3+, Co2+, Ni2+, or Cu2+) complexes for electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 6, 18475–18479 (2014)CrossRef
155.
go back to reference T. Szabó, T. Szabó-Plánka, D. Jónás, N.V. Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)CrossRef T. Szabó, T. Szabó-Plánka, D. Jónás, N.V. Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)CrossRef
156.
go back to reference M. Veerapandian, S. Neethirajan, Graphene oxide chemically decorated with Ag–Ru/chitosan nanoparticles: Fabrication, electrode processing and immunosensing properties. RSC Adv. 5, 75015–75024 (2015)CrossRef M. Veerapandian, S. Neethirajan, Graphene oxide chemically decorated with Ag–Ru/chitosan nanoparticles: Fabrication, electrode processing and immunosensing properties. RSC Adv. 5, 75015–75024 (2015)CrossRef
157.
go back to reference D. Zhou, Q.-Y. Cheng, Y. Cui, T. Wang, X. Li, B.-H. Han, Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 66, 592–598 (2014)CrossRef D. Zhou, Q.-Y. Cheng, Y. Cui, T. Wang, X. Li, B.-H. Han, Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 66, 592–598 (2014)CrossRef
158.
go back to reference E.V. Basiuk, M. Martínez-Herrera, E. Álvarez-Zauco, L.V. Henao-Holguín, I. Puente-Lee, V.A. Basiuk, Noncovalent functionalization of graphene with a Ni(II) tetraaza[14]annulene complex. Dalton Trans. 43, 7413–7428 (2014)CrossRef E.V. Basiuk, M. Martínez-Herrera, E. Álvarez-Zauco, L.V. Henao-Holguín, I. Puente-Lee, V.A. Basiuk, Noncovalent functionalization of graphene with a Ni(II) tetraaza[14]annulene complex. Dalton Trans. 43, 7413–7428 (2014)CrossRef
159.
go back to reference R. Kumar, K. Jayaramulu, T. Kumar Maji, C.N.R. Rao, Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Trans. 43, 7383–7386 (2014)CrossRef R. Kumar, K. Jayaramulu, T. Kumar Maji, C.N.R. Rao, Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Trans. 43, 7383–7386 (2014)CrossRef
160.
go back to reference V.A. Basiuk, E.V. Rybak-Akimova, E.V. Basiuk, Graphene oxide and nanodiamond: Same carboxylic groups, different complexation properties. RSC Adv. 7, 17442–17450 (2017)CrossRef V.A. Basiuk, E.V. Rybak-Akimova, E.V. Basiuk, Graphene oxide and nanodiamond: Same carboxylic groups, different complexation properties. RSC Adv. 7, 17442–17450 (2017)CrossRef
161.
go back to reference V.A. Basiuk, N. Alzate-Carvajal, L.V. Henao-Holguín, E.V. Rybak-Akimova, E.V. Basiuk, Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers. Appl. Surf. Sci. 371, 16–27 (2016)CrossRef V.A. Basiuk, N. Alzate-Carvajal, L.V. Henao-Holguín, E.V. Rybak-Akimova, E.V. Basiuk, Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers. Appl. Surf. Sci. 371, 16–27 (2016)CrossRef
162.
go back to reference C.M. Parnell, B. Chhetri, A. Brandt, F. Watanabe, Z.A. Nima, T.K. Mudalige, A.S. Biris, A. Ghosh, Polydopamine-coated manganese complex/graphene nanocomposite for enhanced electrocatalytic activity towards oxygen reduction. Sci. Rep. 6, 31415 (2016)CrossRef C.M. Parnell, B. Chhetri, A. Brandt, F. Watanabe, Z.A. Nima, T.K. Mudalige, A.S. Biris, A. Ghosh, Polydopamine-coated manganese complex/graphene nanocomposite for enhanced electrocatalytic activity towards oxygen reduction. Sci. Rep. 6, 31415 (2016)CrossRef
163.
go back to reference J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, A. Bende, S. Beck, Structure of polydopamine: A never-ending story? Langmuir 29(33), 10539–10548 (2013)CrossRef J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, A. Bende, S. Beck, Structure of polydopamine: A never-ending story? Langmuir 29(33), 10539–10548 (2013)CrossRef
164.
go back to reference G.I. Cardenas-Jiron, P. Leon-Plata, D. Cortes-Arriagada, J.M. Seminario, Electrical characteristics of cobalt phthalocyanine complexes adsorbed on graphene. J. Phys. Chem. C 115, 16052–16062 (2011)CrossRef G.I. Cardenas-Jiron, P. Leon-Plata, D. Cortes-Arriagada, J.M. Seminario, Electrical characteristics of cobalt phthalocyanine complexes adsorbed on graphene. J. Phys. Chem. C 115, 16052–16062 (2011)CrossRef
165.
go back to reference Y. Wei-Guo, L. Dan, P. Xiao-Feng, D. Wei-Dong, Interfacial electronic structure at a metal–phthalocyanine/graphene interface: Copper–phthalocyanine versus iron–phthalocyanine. Chin. Phys. B 22(11), 117301 (2013)CrossRef Y. Wei-Guo, L. Dan, P. Xiao-Feng, D. Wei-Dong, Interfacial electronic structure at a metal–phthalocyanine/graphene interface: Copper–phthalocyanine versus iron–phthalocyanine. Chin. Phys. B 22(11), 117301 (2013)CrossRef
166.
go back to reference R. Devasenathipathy, V. Mani, S.-M. Chen, K. Manibalan, S.-T. Huang, Determination of 4-nitrophenol at iron phthalocyanine decorated graphene nanosheets film modified electrode. Int. J. Electrochem. Sci. 10, 1384–1392 (2015) R. Devasenathipathy, V. Mani, S.-M. Chen, K. Manibalan, S.-T. Huang, Determination of 4-nitrophenol at iron phthalocyanine decorated graphene nanosheets film modified electrode. Int. J. Electrochem. Sci. 10, 1384–1392 (2015)
167.
go back to reference J. Ren, S. Meng, Y.-L. Wang, X.-C. Ma, Q.-K. Xue, E. Kaxiras, Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys. 134, 194706 (2011)CrossRef J. Ren, S. Meng, Y.-L. Wang, X.-C. Ma, Q.-K. Xue, E. Kaxiras, Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys. 134, 194706 (2011)CrossRef
168.
go back to reference J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, W.J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6), 1900–1905 (2011)CrossRef J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, W.J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6), 1900–1905 (2011)CrossRef
169.
go back to reference N. Kafle, A. Buldum, The interaction between fullerene-porphyrin dyad and graphene. AIMS Mater. Sci. 4(2), 505–514 (2017)CrossRef N. Kafle, A. Buldum, The interaction between fullerene-porphyrin dyad and graphene. AIMS Mater. Sci. 4(2), 505–514 (2017)CrossRef
170.
go back to reference F. Montiel, A. Miralrio, L.E. Sansores, S. Fomine, Complexes of graphene nanoribbons with porphyrins and metal-encapsulated C28 as molecular rectifiers: A theoretical study. Mol. Simul. 43(9), 706–713 (2017)CrossRef F. Montiel, A. Miralrio, L.E. Sansores, S. Fomine, Complexes of graphene nanoribbons with porphyrins and metal-encapsulated C28 as molecular rectifiers: A theoretical study. Mol. Simul. 43(9), 706–713 (2017)CrossRef
171.
go back to reference V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen, J. Rossmeisl, Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013)CrossRef V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen, J. Rossmeisl, Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013)CrossRef
172.
go back to reference M.M. Bernal, E.M. Pérez, One-pot exfoliation of graphite and synthesis of nanographene/dimesitylporphyrin hybrids. Int. J. Mol. Sci. 16, 10704–10714 (2015)CrossRef M.M. Bernal, E.M. Pérez, One-pot exfoliation of graphite and synthesis of nanographene/dimesitylporphyrin hybrids. Int. J. Mol. Sci. 16, 10704–10714 (2015)CrossRef
173.
go back to reference M. Jurow, V. Manichev, C. Pabon, B. Hageman, Y. Matolina, C.M. Drain, Self-organization of Zr(IV) porphyrinoids on graphene oxide surfaces by axial metal coordination. Inorg. Chem. 52, 10576–10582 (2013)CrossRef M. Jurow, V. Manichev, C. Pabon, B. Hageman, Y. Matolina, C.M. Drain, Self-organization of Zr(IV) porphyrinoids on graphene oxide surfaces by axial metal coordination. Inorg. Chem. 52, 10576–10582 (2013)CrossRef
174.
go back to reference K. Karimne Zhad, A. Moghimi, Separation of Cr(III) from by functionalized graphene oxide with covalently linked porphyrin (GO–H2NP) adsorbed on surfactant coated C18. Orient. J. Chem. 30(1), 187–194 (2014)CrossRef K. Karimne Zhad, A. Moghimi, Separation of Cr(III) from by functionalized graphene oxide with covalently linked porphyrin (GO–H2NP) adsorbed on surfactant coated C18. Orient. J. Chem. 30(1), 187–194 (2014)CrossRef
175.
go back to reference S. Zhang, S. Tang, J. Lei, H. Dong, H. Ju, Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J. Electroanal. Chem. 656, 285–288 (2011)CrossRef S. Zhang, S. Tang, J. Lei, H. Dong, H. Ju, Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J. Electroanal. Chem. 656, 285–288 (2011)CrossRef
176.
go back to reference T. Poursaberi, M. Hassanisadi, Application of metalloporphyrin grafted-graphene oxide for the construction of a novel salicylate-selective electrode. J. Porphyrins Phthalocyanines 16, 1140 (2012)CrossRef T. Poursaberi, M. Hassanisadi, Application of metalloporphyrin grafted-graphene oxide for the construction of a novel salicylate-selective electrode. J. Porphyrins Phthalocyanines 16, 1140 (2012)CrossRef
177.
go back to reference H. Su, S. Wu, Z. Li, Q. Huo, J. Guan, Q. Kan, Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation. Appl. Organomet. Chem. 29, 462–467 (2015)CrossRef H. Su, S. Wu, Z. Li, Q. Huo, J. Guan, Q. Kan, Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation. Appl. Organomet. Chem. 29, 462–467 (2015)CrossRef
178.
go back to reference Q. Zhao, C. Bai, W. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Catalytic epoxidation of olefins with graphene oxide supported copper (Salen) complex. Ind. Eng. Chem. Res. 53, 4232–4238 (2014)CrossRef Q. Zhao, C. Bai, W. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Catalytic epoxidation of olefins with graphene oxide supported copper (Salen) complex. Ind. Eng. Chem. Res. 53, 4232–4238 (2014)CrossRef
179.
go back to reference Z. Li, S. Wu, D. Zheng, J. Liu, H. Liu, H. Lu, Q. Huo, J. Guan, Q. Kan, Dioxomolybdenum(VI) complex covalently attached to amino-modified graphene oxide: Heterogeneous catalyst for the epoxidation of alkenes. Appl. Organomet. Chem. 28, 317–323 (2014)CrossRef Z. Li, S. Wu, D. Zheng, J. Liu, H. Liu, H. Lu, Q. Huo, J. Guan, Q. Kan, Dioxomolybdenum(VI) complex covalently attached to amino-modified graphene oxide: Heterogeneous catalyst for the epoxidation of alkenes. Appl. Organomet. Chem. 28, 317–323 (2014)CrossRef
180.
go back to reference H.P. Mungse, S. Verma, N. Kumar, B. Sain, O.P. Khatri, Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012)CrossRef H.P. Mungse, S. Verma, N. Kumar, B. Sain, O.P. Khatri, Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012)CrossRef
181.
go back to reference P.K. Khatri, S. Choudhary, R. Singh, S.L. Jain, O.P. Khatri, Dalton Trans. 43, 8054–8061 (2014)CrossRef P.K. Khatri, S. Choudhary, R. Singh, S.L. Jain, O.P. Khatri, Dalton Trans. 43, 8054–8061 (2014)CrossRef
182.
go back to reference S. Ragu, S.-M. Chen, P. Ranganathan, S.-P. Rwei, Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int. J. Electrochem. Sci. 11, 9133–9144 (2016)CrossRef S. Ragu, S.-M. Chen, P. Ranganathan, S.-P. Rwei, Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int. J. Electrochem. Sci. 11, 9133–9144 (2016)CrossRef
183.
go back to reference J.-W. Liu, Y. Zhang, X.-W. Chen, J.-H. Wang, Graphene oxide–rare earth metal–organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 6, 10196–10204 (2014)CrossRef J.-W. Liu, Y. Zhang, X.-W. Chen, J.-H. Wang, Graphene oxide–rare earth metal–organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 6, 10196–10204 (2014)CrossRef
184.
go back to reference Y. Guo, Y. Han, S. Shuang, C. Dong, Rational synthesis of graphene–metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. J. Mater. Chem. 22, 13166–13173 (2012)CrossRef Y. Guo, Y. Han, S. Shuang, C. Dong, Rational synthesis of graphene–metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. J. Mater. Chem. 22, 13166–13173 (2012)CrossRef
185.
go back to reference W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbibc, X. Sun, Facile synthesis of novel Ni(II)-based metal–organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst 138, 429–433 (2013)CrossRef W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbibc, X. Sun, Facile synthesis of novel Ni(II)-based metal–organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst 138, 429–433 (2013)CrossRef
186.
go back to reference M. Jahan, Z. Liu, K. Ping Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)CrossRef M. Jahan, Z. Liu, K. Ping Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)CrossRef
187.
go back to reference Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–37 (2014)CrossRef Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–37 (2014)CrossRef
188.
go back to reference J.H. Lee, J. Jaworski, J. Hwa Jung, Luminescent metal–organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives. Nanoscale 5, 8533–8540 (2013)CrossRef J.H. Lee, J. Jaworski, J. Hwa Jung, Luminescent metal–organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives. Nanoscale 5, 8533–8540 (2013)CrossRef
189.
go back to reference G. Cheng, Z.-G. Wang, S. Denagamage, S.-Y. Zheng, Graphene-templated synthesis of magnetic metal organic framework nanocomposites for selective enrichment of biomolecules. ACS Appl. Mater. Interfaces 8(16), 10234–10242 (2016)CrossRef G. Cheng, Z.-G. Wang, S. Denagamage, S.-Y. Zheng, Graphene-templated synthesis of magnetic metal organic framework nanocomposites for selective enrichment of biomolecules. ACS Appl. Mater. Interfaces 8(16), 10234–10242 (2016)CrossRef
190.
go back to reference D.D. Chronopoulos, A. Bakandritsos, P. Lazar, M. Pykal, K. Čeṕe, R. Zborǐl, M. Otyepka, High-yield alkylation and arylation of graphene via grignard reaction with fluorographene. Chem. Mater. 29, 926–930 (2017)CrossRef D.D. Chronopoulos, A. Bakandritsos, P. Lazar, M. Pykal, K. Čeṕe, R. Zborǐl, M. Otyepka, High-yield alkylation and arylation of graphene via grignard reaction with fluorographene. Chem. Mater. 29, 926–930 (2017)CrossRef
191.
go back to reference Z.-C. Zhang, H.-Y. Jiang, Z.-W. Yua, Surface-enhanced Raman scattering, electron paramagnetic resonance, and electrochemical activity of copper(II) l-methionine complex/silver nanoparticles/graphene-coupled nanoaggregates. J. Coord. Chem. 68(1), 18–26 (2015)CrossRef Z.-C. Zhang, H.-Y. Jiang, Z.-W. Yua, Surface-enhanced Raman scattering, electron paramagnetic resonance, and electrochemical activity of copper(II) l-methionine complex/silver nanoparticles/graphene-coupled nanoaggregates. J. Coord. Chem. 68(1), 18–26 (2015)CrossRef
192.
go back to reference A.V. Akimov, C. Williams, A.B. Kolomeisky, Charge transfer and chemisorption of fullerene molecules on metal surfaces: Application to dynamics of nanocars. J. Phys. Chem. C 116, 13816–13826 (2012)CrossRef A.V. Akimov, C. Williams, A.B. Kolomeisky, Charge transfer and chemisorption of fullerene molecules on metal surfaces: Application to dynamics of nanocars. J. Phys. Chem. C 116, 13816–13826 (2012)CrossRef
193.
go back to reference R. Singhal, D.C. Agarwal, S. Mohapatra, Y.K. Mishra, D. Kabiraj, et al., Synthesis and characterizations of silver-fullerene C70 nanocomposite. Appl. Phys. Lett. 93, 103114 (2008)CrossRef R. Singhal, D.C. Agarwal, S. Mohapatra, Y.K. Mishra, D. Kabiraj, et al., Synthesis and characterizations of silver-fullerene C70 nanocomposite. Appl. Phys. Lett. 93, 103114 (2008)CrossRef
194.
go back to reference H. Kawabata, H. Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms. C (J. Carbon Res.) 3, 15, 8 pp (2017) H. Kawabata, H. Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms. C (J. Carbon Res.) 3, 15, 8 pp (2017)
195.
go back to reference M. Robledo, N.F. Aguirre, S. Díaz-Tendero, F. Martín, M.I. Alcami, Bonding in exohedral metal–fullerene cationic complexes. RSC Adv. 4, 53010–53020 (2014)CrossRef M. Robledo, N.F. Aguirre, S. Díaz-Tendero, F. Martín, M.I. Alcami, Bonding in exohedral metal–fullerene cationic complexes. RSC Adv. 4, 53010–53020 (2014)CrossRef
196.
go back to reference G. Bottari, G. de la Torre, T. Torres, Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)CrossRef G. Bottari, G. de la Torre, T. Torres, Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)CrossRef
197.
go back to reference A.L. Balch, M.M. Olmstead, Reactions of transition metal complexes with fullerenes (C60, C70, etc.) and related materials. Chem. Rev. 98, 2123–2165 (1998)CrossRef A.L. Balch, M.M. Olmstead, Reactions of transition metal complexes with fullerenes (C60, C70, etc.) and related materials. Chem. Rev. 98, 2123–2165 (1998)CrossRef
198.
go back to reference D.T. Thompson, Platinum group metal fullerenes. Some recent studies on systems containing C60. Platin. Met. Rev. 40(l), 23–25 (1996) D.T. Thompson, Platinum group metal fullerenes. Some recent studies on systems containing C60. Platin. Met. Rev. 40(l), 23–25 (1996)
199.
go back to reference K.B. Ghiassi, M.M. Olmstead, A.L. Balch, Gadolinium-containing endohedral fullerenes: Structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans. 43, 7346–7358 (2014)CrossRef K.B. Ghiassi, M.M. Olmstead, A.L. Balch, Gadolinium-containing endohedral fullerenes: Structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans. 43, 7346–7358 (2014)CrossRef
200.
go back to reference E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nano-photonics, 1st edn. (CRC Press, Boca Raton, 2011), 328 ppCrossRef E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nano-photonics, 1st edn. (CRC Press, Boca Raton, 2011), 328 ppCrossRef
201.
go back to reference S. Yang, C.-R. Wang, Endohedral Fullerenes: From Fundamentals to Applications (World Scientific Publishing Company, Singapore, 2014), 448 ppCrossRef S. Yang, C.-R. Wang, Endohedral Fullerenes: From Fundamentals to Applications (World Scientific Publishing Company, Singapore, 2014), 448 ppCrossRef
202.
go back to reference H. Shinohara, N. Tagmatarchis, Endohedral Metallofullerenes: Fullerenes with Metal Inside, 1st edn. (Wiley, Chichester/Hoboken, 2015), 296 ppCrossRef H. Shinohara, N. Tagmatarchis, Endohedral Metallofullerenes: Fullerenes with Metal Inside, 1st edn. (Wiley, Chichester/Hoboken, 2015), 296 ppCrossRef
203.
go back to reference M. Petrukhina, L.T. Scott, Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, 1st edn. (Wiley, Hoboken, 2011), 440 ppCrossRef M. Petrukhina, L.T. Scott, Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, 1st edn. (Wiley, Hoboken, 2011), 440 ppCrossRef
204.
go back to reference D.M. Guldi, N. Martin, Fullerenes: From Synthesis to Optoelectronic Properties, Developments in fullerene science, 1st edn. (Springer, Dordrecht, 2003), 441 pp D.M. Guldi, N. Martin, Fullerenes: From Synthesis to Optoelectronic Properties, Developments in fullerene science, 1st edn. (Springer, Dordrecht, 2003), 441 pp
205.
go back to reference P.J. Bracher, D.I. Schuster, Electron transfer in functionalized fullerenes, in Fullerenes: From Synthesis to Optoelectronic Properties, ed. by D. M. Guldi, N. Martín, (Kluwer Academic Publishers, Dordrecht, 2002), pp. 163–212CrossRef P.J. Bracher, D.I. Schuster, Electron transfer in functionalized fullerenes, in Fullerenes: From Synthesis to Optoelectronic Properties, ed. by D. M. Guldi, N. Martín, (Kluwer Academic Publishers, Dordrecht, 2002), pp. 163–212CrossRef
206.
go back to reference S. Filippone, E.E. Maroto, A. Martín-Domenech, N. Martín, Metal catalysis in fullerene chemistry, in Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, ed. by A. J. L. Pombeiro, (Wiley, Hoboken, 2013)CrossRef S. Filippone, E.E. Maroto, A. Martín-Domenech, N. Martín, Metal catalysis in fullerene chemistry, in Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, ed. by A. J. L. Pombeiro, (Wiley, Hoboken, 2013)CrossRef
207.
go back to reference Y. Matsuo, E. Nakamura, Application of fullerenes to nanodevices, in Chemistry of Nanocarbons, ed. by T. Akasaka, F. Wudl, S. Nagase, (Wiley, Chichester, 2010)CrossRef Y. Matsuo, E. Nakamura, Application of fullerenes to nanodevices, in Chemistry of Nanocarbons, ed. by T. Akasaka, F. Wudl, S. Nagase, (Wiley, Chichester, 2010)CrossRef
208.
go back to reference M.A. Lebedeva, T.W. Chamberlain, A.N. Khlobystov, Harnessing the synergistic and complementary properties of fullerene and transition metal compounds for nanomaterial applications. Chem. Rev. 115(20), 11301–11351 (2015)CrossRef M.A. Lebedeva, T.W. Chamberlain, A.N. Khlobystov, Harnessing the synergistic and complementary properties of fullerene and transition metal compounds for nanomaterial applications. Chem. Rev. 115(20), 11301–11351 (2015)CrossRef
209.
go back to reference K. Kamarás, G. Klupp, Metallicity in fullerides. Dalton Trans. 43, 7366–7378 (2014)CrossRef K. Kamarás, G. Klupp, Metallicity in fullerides. Dalton Trans. 43, 7366–7378 (2014)CrossRef
211.
go back to reference B.K. Reddy, S.C. Gadekar, V.G. Anand, Non-covalent composites of antiaromatic isophlorin–fullerene. Chem. Commun. 51, 8276–8279 (2015)CrossRef B.K. Reddy, S.C. Gadekar, V.G. Anand, Non-covalent composites of antiaromatic isophlorin–fullerene. Chem. Commun. 51, 8276–8279 (2015)CrossRef
212.
go back to reference P. Bhyrappa, K. Karunanithi, Porphyrin−fullerene, C60, cocrystallates: Influence of C60 on the porphyrin ring conformation. Inorg. Chem. 49(18), 8389–8400 (2010)CrossRef P. Bhyrappa, K. Karunanithi, Porphyrin−fullerene, C60, cocrystallates: Influence of C60 on the porphyrin ring conformation. Inorg. Chem. 49(18), 8389–8400 (2010)CrossRef
213.
go back to reference M. Jurow, A. Varotto, V. Manichev, et al., Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 on ITO. RSC Adv. 3, 21360–21364 (2013)CrossRef M. Jurow, A. Varotto, V. Manichev, et al., Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 on ITO. RSC Adv. 3, 21360–21364 (2013)CrossRef
214.
go back to reference D.V. Konarev, R.N. Lyubovskaya, New approaches to the synthesis of transition-metal complexes of fullerenes C60 and C70. Russ. Chem. Rev. 85(11), 1215–1228 (2016)CrossRef D.V. Konarev, R.N. Lyubovskaya, New approaches to the synthesis of transition-metal complexes of fullerenes C60 and C70. Russ. Chem. Rev. 85(11), 1215–1228 (2016)CrossRef
215.
go back to reference D.V. Konarev, S.S. Khasanov, R.N. Lyubovskaya, Transition from free rotation of C70 molecules to static disorder in the molecular C70 complex with covalently linked porphyrin dimers: {(FeIIITPP)2O}·C70. J. Porphyrins Phthalocyanines 14, 293 (2010)CrossRef D.V. Konarev, S.S. Khasanov, R.N. Lyubovskaya, Transition from free rotation of C70 molecules to static disorder in the molecular C70 complex with covalently linked porphyrin dimers: {(FeIIITPP)2O}·C70. J. Porphyrins Phthalocyanines 14, 293 (2010)CrossRef
216.
go back to reference A.Y. Vul, V.I. Sokolov, Nanocarbon studies in Russia: From fullerenes to nanotubes and nanodiamonds. Nanotechnol Russ 4(7–8), 397–414 (2009)CrossRef A.Y. Vul, V.I. Sokolov, Nanocarbon studies in Russia: From fullerenes to nanotubes and nanodiamonds. Nanotechnol Russ 4(7–8), 397–414 (2009)CrossRef
217.
go back to reference D. Soto, R. Salcedo, Coordination modes and different hapticities for fullerene organometallic complexes. Molecules 17, 7151–7168 (2012)CrossRef D. Soto, R. Salcedo, Coordination modes and different hapticities for fullerene organometallic complexes. Molecules 17, 7151–7168 (2012)CrossRef
218.
go back to reference S.-K. Goh, D.S. Marynick, Ability of fullerenes to act as η6 ligands in transition metal complexes. A comparative PM3(tm)–density functional theory study. J. Comput. Chem. 22(16), 1881–1886 (2001)CrossRef S.-K. Goh, D.S. Marynick, Ability of fullerenes to act as η6 ligands in transition metal complexes. A comparative PM3(tm)–density functional theory study. J. Comput. Chem. 22(16), 1881–1886 (2001)CrossRef
219.
go back to reference F. Banim, C.J. Cardin, D.J. Cardin, M. Pistocchi, A. Todd, The synthesis of dicobalt and dinickel complexes of trimethylsilylethynyl-1, 2-dihydrofullerene; characterisation by n.m.r. and structure of the first acyclic metal fullerene derivative: Molecular structure of [η2-{2-H-1-(Me3SiC≡C)-C60}Ni2(η-C5H5)2]. J. Phys. Chem. Solids 58(11), 1919–1923 (1997)CrossRef F. Banim, C.J. Cardin, D.J. Cardin, M. Pistocchi, A. Todd, The synthesis of dicobalt and dinickel complexes of trimethylsilylethynyl-1, 2-dihydrofullerene; characterisation by n.m.r. and structure of the first acyclic metal fullerene derivative: Molecular structure of [η2-{2-H-1-(Me3SiC≡C)-C60}Ni2(η-C5H5)2]. J. Phys. Chem. Solids 58(11), 1919–1923 (1997)CrossRef
220.
go back to reference A. Bianco, M. Maggini, S. Mondini, A. Polese, G. Scorrano, C. Toniolo, D.M. Guldi, Synthesis and characterization of a peptide-linked C60 Dyad, in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, ed. by K. M. Kadish, R. S. Ruoff, vol. 6, (The Electrochemical Society Inc., Pennington, 1998), pp. 1145–1151 A. Bianco, M. Maggini, S. Mondini, A. Polese, G. Scorrano, C. Toniolo, D.M. Guldi, Synthesis and characterization of a peptide-linked C60 Dyad, in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, ed. by K. M. Kadish, R. S. Ruoff, vol. 6, (The Electrochemical Society Inc., Pennington, 1998), pp. 1145–1151
221.
go back to reference T.V. Magdesieva, V.V. Bashilov, D.N. Kravchuk, V.I. Sokolov, K.P. Butin, Electrochemical metallation and arylation of C60. Russ. J. Electrochem. 35(9), 992–999 (1999) T.V. Magdesieva, V.V. Bashilov, D.N. Kravchuk, V.I. Sokolov, K.P. Butin, Electrochemical metallation and arylation of C60. Russ. J. Electrochem. 35(9), 992–999 (1999)
222.
go back to reference W. Zhao, J. Tang, A.U. Falster, W.B. Simmons, R.L. Sweany, Infrared transmission study of lanthanide fullerides SmxC60 prepared by metal vapor synthesis. Proc. Electrochem. Soc. 96–10 (Recent Advances in the Chemistry and Physics of Fullerenes, Vol. 3), 1115–1126 (1996); J. Alloys Compd. 249(1–2), 241–245 (1997)CrossRef W. Zhao, J. Tang, A.U. Falster, W.B. Simmons, R.L. Sweany, Infrared transmission study of lanthanide fullerides SmxC60 prepared by metal vapor synthesis. Proc. Electrochem. Soc. 96–10 (Recent Advances in the Chemistry and Physics of Fullerenes, Vol. 3), 1115–1126 (1996); J. Alloys Compd. 249(1–2), 241–245 (1997)CrossRef
223.
go back to reference Y. Matsuo, Y. Kuninobu, A. Muramatsu, M. Sawamura, E. Nakamura, Synthesis of metal fullerene complexes by the use of fullerene halides. Organometallics 27(14), 3403–3409 (2008)CrossRef Y. Matsuo, Y. Kuninobu, A. Muramatsu, M. Sawamura, E. Nakamura, Synthesis of metal fullerene complexes by the use of fullerene halides. Organometallics 27(14), 3403–3409 (2008)CrossRef
224.
go back to reference H. Zheng, X. Zhao, S. Sakaki, [2+2]-type reaction of metal–metal σ-bond with fullerene forming an η1-C60 metal complex: Mechanistic details of formation reaction and prediction of a new η1-C60 metal complex. Inorg. Chem. 56(11), 6746–6754 (2017)CrossRef H. Zheng, X. Zhao, S. Sakaki, [2+2]-type reaction of metal–metal σ-bond with fullerene forming an η1-C60 metal complex: Mechanistic details of formation reaction and prediction of a new η1-C60 metal complex. Inorg. Chem. 56(11), 6746–6754 (2017)CrossRef
225.
go back to reference N. Kishi, M. Akita, M. Kamiya, et al., Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135(35), 12976–12979 (2013)CrossRef N. Kishi, M. Akita, M. Kamiya, et al., Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135(35), 12976–12979 (2013)CrossRef
226.
go back to reference N.B. Jayaratna, M.M. Olmstead, B.I. Kharisov, H.V. Rasika Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as Buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)CrossRef N.B. Jayaratna, M.M. Olmstead, B.I. Kharisov, H.V. Rasika Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as Buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)CrossRef
227.
go back to reference Y. Eda, K. Itoh, Y.N. Ito, M. Fujitsuka, T. Majima, T. Kawato, Synthesis and properties of fullerene (C70) complexes of 2,6-bis(porphyrin)-substituted pyrazine derivatives bound to a Pd(II) ion. J. Supramol. Chem. 22(9), 517–523 (2010)CrossRef Y. Eda, K. Itoh, Y.N. Ito, M. Fujitsuka, T. Majima, T. Kawato, Synthesis and properties of fullerene (C70) complexes of 2,6-bis(porphyrin)-substituted pyrazine derivatives bound to a Pd(II) ion. J. Supramol. Chem. 22(9), 517–523 (2010)CrossRef
229.
go back to reference B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109(11), 6275–6540 (2009)CrossRef B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109(11), 6275–6540 (2009)CrossRef
230.
go back to reference G. Bottari, J.A. Suanzes, O. Trukhina, T. Torres, Phthalocyanine−carbon nanostructure materials assembled through supramolecular interactions. J. Phys. Chem. Lett. 2, 905–913 (2011)CrossRef G. Bottari, J.A. Suanzes, O. Trukhina, T. Torres, Phthalocyanine−carbon nanostructure materials assembled through supramolecular interactions. J. Phys. Chem. Lett. 2, 905–913 (2011)CrossRef
231.
go back to reference G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42, 473–487 (2009)CrossRef G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42, 473–487 (2009)CrossRef
232.
go back to reference H. Yamada, H. Imahori, Y. Nishimura, Y. Nishimura, I. Yamazaki, T.K. Ahn, S.K. Kim, D. Kim, S. Fukuzumi, Photovoltaic properties of self-assembled monolayers of porphyrins and porphyrin−fullerene dyads on ITO and gold surfaces. J. Am. Chem. Soc. 125(30), 9129–9139 (2003)CrossRef H. Yamada, H. Imahori, Y. Nishimura, Y. Nishimura, I. Yamazaki, T.K. Ahn, S.K. Kim, D. Kim, S. Fukuzumi, Photovoltaic properties of self-assembled monolayers of porphyrins and porphyrin−fullerene dyads on ITO and gold surfaces. J. Am. Chem. Soc. 125(30), 9129–9139 (2003)CrossRef
233.
go back to reference H. Imahori, M. Kimura, K. Hosomizu, T. Sato, T.K. Ahn, S.K. Kim, D. Kim, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Vectorial electron relay at ITO electrodes modified with self-assembled monolayers of ferrocene–porphyrin–fullerene triads and porphyrin–fullerene dyads for molecular photovoltaic devices. Chem. Eur. J. 10, 5111–5122 (2004)CrossRef H. Imahori, M. Kimura, K. Hosomizu, T. Sato, T.K. Ahn, S.K. Kim, D. Kim, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Vectorial electron relay at ITO electrodes modified with self-assembled monolayers of ferrocene–porphyrin–fullerene triads and porphyrin–fullerene dyads for molecular photovoltaic devices. Chem. Eur. J. 10, 5111–5122 (2004)CrossRef
234.
go back to reference N.V. Tkachenko, H. Lemmetyinen, J. Sonoda, K. Ohkubo, T. Sato, H. Imahori, S. Fukuzumi, Ultrafast photodynamics of exciplex formation and photoinduced electron transfer in porphyrin−fullerene dyads linked at close proximity. J. Phys. Chem. A 107, 8834–8844 (2003)CrossRef N.V. Tkachenko, H. Lemmetyinen, J. Sonoda, K. Ohkubo, T. Sato, H. Imahori, S. Fukuzumi, Ultrafast photodynamics of exciplex formation and photoinduced electron transfer in porphyrin−fullerene dyads linked at close proximity. J. Phys. Chem. A 107, 8834–8844 (2003)CrossRef
235.
go back to reference N. Armaroli, G. Accorsi, F.Y. Song, A. Palkar, L. Echegoyen, D. Bonifazi, F. Diederich, Photophysical and electrochemical properties of meso,meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem 6, 732–743 (2005)CrossRef N. Armaroli, G. Accorsi, F.Y. Song, A. Palkar, L. Echegoyen, D. Bonifazi, F. Diederich, Photophysical and electrochemical properties of meso,meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem 6, 732–743 (2005)CrossRef
236.
go back to reference P.D.W. Boyd, C.A. Reed, Fullerene-porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005)CrossRef P.D.W. Boyd, C.A. Reed, Fullerene-porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005)CrossRef
237.
go back to reference G. Bottari, G. de la Torre, T. Torres, Phthalocyanine–nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)CrossRef G. Bottari, G. de la Torre, T. Torres, Phthalocyanine–nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)CrossRef
238.
go back to reference Y.-J. Cho, T.K. Ahn, H. Song, et al., ZnP-C60 dyad (Os) structure on ITO. J. Am. Chem. Soc. 127, 2380–2381 (2005)CrossRef Y.-J. Cho, T.K. Ahn, H. Song, et al., ZnP-C60 dyad (Os) structure on ITO. J. Am. Chem. Soc. 127, 2380–2381 (2005)CrossRef
239.
go back to reference R. Koeppe, N.S. Sariciftci, P.A. Troshin, R.N. Lyubovskaya, Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure. Appl. Phys. Lett. 87, 244102 (2005)CrossRef R. Koeppe, N.S. Sariciftci, P.A. Troshin, R.N. Lyubovskaya, Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure. Appl. Phys. Lett. 87, 244102 (2005)CrossRef
240.
go back to reference M.G. Walter, A.B. Rudine, C.C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 14, 759–792 (2010)CrossRef M.G. Walter, A.B. Rudine, C.C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 14, 759–792 (2010)CrossRef
241.
go back to reference T. Hasobe, H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005)CrossRef T. Hasobe, H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005)CrossRef
242.
go back to reference T. Hasobe, H. Imahori, P.V. Kamat, S. Fukuzumi, Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. J. Am. Chem. Soc. 125, 14962–14963 (2003)CrossRef T. Hasobe, H. Imahori, P.V. Kamat, S. Fukuzumi, Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. J. Am. Chem. Soc. 125, 14962–14963 (2003)CrossRef
243.
go back to reference H. Imahori, S. Fukuzumi, Porphyrin- and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 14(6), 525–536 (2004)CrossRef H. Imahori, S. Fukuzumi, Porphyrin- and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 14(6), 525–536 (2004)CrossRef
244.
go back to reference E.S. Zyablikova, N.A. Bragina, A.F. Mironov, Covalent-bound conjugates of fullerene C60 and metal complexes of porphyrins with long-chain substituents. Mendeleev Commun. 22, 257–259 (2012)CrossRef E.S. Zyablikova, N.A. Bragina, A.F. Mironov, Covalent-bound conjugates of fullerene C60 and metal complexes of porphyrins with long-chain substituents. Mendeleev Commun. 22, 257–259 (2012)CrossRef
245.
go back to reference S.J. Dammer, P.V. Solntsev, J.R. Sabin, V.N. Nemykin, Synthesis, characterization, and electron-transfer processes in indium ferrocenyl-containing porphyrins and their fullerene adducts. Inorg. Chem. 52, 9496–9510 (2013)CrossRef S.J. Dammer, P.V. Solntsev, J.R. Sabin, V.N. Nemykin, Synthesis, characterization, and electron-transfer processes in indium ferrocenyl-containing porphyrins and their fullerene adducts. Inorg. Chem. 52, 9496–9510 (2013)CrossRef
246.
go back to reference D.M. Wood, W. Meng, T.K. Ronson, A.R. Stefankiewicz, J.K.M. Sanders, J.R. Nitschke, Guest-induced transformation of a porphyrin-edged FeII4L6 capsule into a CuIFeII2L4 fullerene receptor. Angew. Chem. 54(13), 3988–3992 (2015)CrossRef D.M. Wood, W. Meng, T.K. Ronson, A.R. Stefankiewicz, J.K.M. Sanders, J.R. Nitschke, Guest-induced transformation of a porphyrin-edged FeII4L6 capsule into a CuIFeII2L4 fullerene receptor. Angew. Chem. 54(13), 3988–3992 (2015)CrossRef
247.
go back to reference M. Yamamoto, J. Föhlinger, J. Petersson, L. Hammarström, H. Imahori, A ruthenium complex–porphyrin–fullerene-linked molecular pentad as an integrative photosynthetic model. Angew. Chem. 56, 3329–3333 (2017)CrossRef M. Yamamoto, J. Föhlinger, J. Petersson, L. Hammarström, H. Imahori, A ruthenium complex–porphyrin–fullerene-linked molecular pentad as an integrative photosynthetic model. Angew. Chem. 56, 3329–3333 (2017)CrossRef
248.
go back to reference W. Cao, Y. Zhang, H. Wang, K. Wang, J. Jiang, Influence of porphyrin meso-attached substituent on the SMM behavior of dysprosium(III) double- deckers with mixed tetrapyrrole ligands. RSC Adv. 5, 17732–17737 (2015)CrossRef W. Cao, Y. Zhang, H. Wang, K. Wang, J. Jiang, Influence of porphyrin meso-attached substituent on the SMM behavior of dysprosium(III) double- deckers with mixed tetrapyrrole ligands. RSC Adv. 5, 17732–17737 (2015)CrossRef
249.
go back to reference L. Moreira, J. Calbo, B.M. Illescas, et al., Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew. Chem. 54(4), 1255–1260 (2015)CrossRef L. Moreira, J. Calbo, B.M. Illescas, et al., Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew. Chem. 54(4), 1255–1260 (2015)CrossRef
250.
go back to reference H. Wang, K. Qian, D. Qi, W. Cao, K. Wang, S. Gao, J. Jiang, Co-crystallized fullerene and a mixed (phthalocyaninato)(porphyrinato) dysprosium double-decker SMM. Chem. Sci. 5, 3214–3220 (2014)CrossRef H. Wang, K. Qian, D. Qi, W. Cao, K. Wang, S. Gao, J. Jiang, Co-crystallized fullerene and a mixed (phthalocyaninato)(porphyrinato) dysprosium double-decker SMM. Chem. Sci. 5, 3214–3220 (2014)CrossRef
251.
go back to reference H.M. Rhoda, M.P. Kayser, Y. Wang, A.Y. Nazarenko, R.V. Belosludov, P. Kiprof, D.A. Blank, V.N. Nemykin, Tuning up an electronic structure of the subphthalocyanine derivatives toward electron-transfer process in noncovalent complexes with C60 and C70 fullerenes: Experimental and theoretical studies. Inorg. Chem. 55, 9549–9563 (2016)CrossRef H.M. Rhoda, M.P. Kayser, Y. Wang, A.Y. Nazarenko, R.V. Belosludov, P. Kiprof, D.A. Blank, V.N. Nemykin, Tuning up an electronic structure of the subphthalocyanine derivatives toward electron-transfer process in noncovalent complexes with C60 and C70 fullerenes: Experimental and theoretical studies. Inorg. Chem. 55, 9549–9563 (2016)CrossRef
252.
go back to reference Y. Matsuo, B.K. Park, Y. Mitani, Y.-W. Zhong, M. Maruyama, E. Nakamura, Synthesis of ruthenium pentamethyl[60]fullerene complexes bearing monodentate diphenylphosphino-methane, −ferrocene, and -butane Ligands. Bull. Kor. Chem. Soc. 31(3), 697–699 (2010)CrossRef Y. Matsuo, B.K. Park, Y. Mitani, Y.-W. Zhong, M. Maruyama, E. Nakamura, Synthesis of ruthenium pentamethyl[60]fullerene complexes bearing monodentate diphenylphosphino-methane, −ferrocene, and -butane Ligands. Bull. Kor. Chem. Soc. 31(3), 697–699 (2010)CrossRef
253.
go back to reference Y. Matsuo, Y. Kuninobu, S. Ito, M. Sawamura, E. Nakamura, Friedel–Crafts functionalization of the cyclopentadienyl ligand in buckymetallocenes. Dalton Trans. 43, 7407–7412 (2014)CrossRef Y. Matsuo, Y. Kuninobu, S. Ito, M. Sawamura, E. Nakamura, Friedel–Crafts functionalization of the cyclopentadienyl ligand in buckymetallocenes. Dalton Trans. 43, 7407–7412 (2014)CrossRef
254.
go back to reference A.L. Svitova, Y. Krupskaya, N. Samoylova, R. Kraus, J. Geck, L. Dunsch, A.A. Popov, Magnetic moments and exchange coupling in nitride clusterfullerenes GdxSc3–xN@C80 (x = 1–3). Dalton Trans. 43, 7387–7390 (2014)CrossRef A.L. Svitova, Y. Krupskaya, N. Samoylova, R. Kraus, J. Geck, L. Dunsch, A.A. Popov, Magnetic moments and exchange coupling in nitride clusterfullerenes GdxSc3–xN@C80 (x = 1–3). Dalton Trans. 43, 7387–7390 (2014)CrossRef
255.
go back to reference S. Stevenson, K.A. Rottinger, J.S. Field, Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans. 43, 7435–7441 (2014)CrossRef S. Stevenson, K.A. Rottinger, J.S. Field, Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans. 43, 7435–7441 (2014)CrossRef
256.
go back to reference A. Botos, A.N. Khlobystov, B. Botka, et al., Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys. Status Solidi B 247(11–12), 2743–2745 (2010)CrossRef A. Botos, A.N. Khlobystov, B. Botka, et al., Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys. Status Solidi B 247(11–12), 2743–2745 (2010)CrossRef
257.
go back to reference M. Koshino, Multiple reaction pathways of metallofullerenes investigated by transmission electron microscopy. Dalton Trans. 43, 7359–7365 (2014)CrossRef M. Koshino, Multiple reaction pathways of metallofullerenes investigated by transmission electron microscopy. Dalton Trans. 43, 7359–7365 (2014)CrossRef
258.
go back to reference A.S. Sinitsa, I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, S.T. Skowronf, E. Bichoutskaia, Formation of nickel–carbon heterofullerenes under electron irradiation. Dalton Trans. 43, 7499–7513 (2014)CrossRef A.S. Sinitsa, I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, S.T. Skowronf, E. Bichoutskaia, Formation of nickel–carbon heterofullerenes under electron irradiation. Dalton Trans. 43, 7499–7513 (2014)CrossRef
259.
go back to reference B. Molina, L. Pérez-Manríquez, R. Salcedo, On the π coordination of organometallic fullerene complexes. Molecules 16, 4652–4659 (2011)CrossRef B. Molina, L. Pérez-Manríquez, R. Salcedo, On the π coordination of organometallic fullerene complexes. Molecules 16, 4652–4659 (2011)CrossRef
260.
go back to reference B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)CrossRef B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)CrossRef
261.
go back to reference T. Oku, A. Suzuki, Y. Yamasaki, Theoretical study of gallium phthalocyanine dimer-fullerene complex for photovoltaic device. J. Mod. Phys. 2(9), ID:7137, 4 pp (2011) T. Oku, A. Suzuki, Y. Yamasaki, Theoretical study of gallium phthalocyanine dimer-fullerene complex for photovoltaic device. J. Mod. Phys. 2(9), ID:7137, 4 pp (2011)
262.
go back to reference V. Strauss, A.A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)CrossRef V. Strauss, A.A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)CrossRef
263.
go back to reference A.F. Mironov, Synthesis, properties, and potential applications of porphyrin-fullerenes. Macroheterocycles 4(3), 186–208 (2011)CrossRef A.F. Mironov, Synthesis, properties, and potential applications of porphyrin-fullerenes. Macroheterocycles 4(3), 186–208 (2011)CrossRef
264.
go back to reference A. Loboda, Quantum-chemical studies on Porphyrins, Fullerenes and Carbon Nanostructures (Springer, Berlin, 2013), 144 ppCrossRef A. Loboda, Quantum-chemical studies on Porphyrins, Fullerenes and Carbon Nanostructures (Springer, Berlin, 2013), 144 ppCrossRef
265.
go back to reference C. García-Simón, M. Costas, X. Ribas, Metallosupramolecular receptors for fullerene binding and release. Chem. Soc. Rev. 45, 40–62 (2016)CrossRef C. García-Simón, M. Costas, X. Ribas, Metallosupramolecular receptors for fullerene binding and release. Chem. Soc. Rev. 45, 40–62 (2016)CrossRef
266.
go back to reference S. Sarkar, S.M. Rezayat, A. Buchachenko, S. Sarkar, S.M. Rezayat, A.L. Buchachenko, D.A. Kuznetsov, M.A. Orlova, M.A. Yurovskaya, European Union Patents № 07009881.9 and № 07009882.7, 2007, Munich, Germany S. Sarkar, S.M. Rezayat, A. Buchachenko, S. Sarkar, S.M. Rezayat, A.L. Buchachenko, D.A. Kuznetsov, M.A. Orlova, M.A. Yurovskaya, European Union Patents № 07009881.9 and № 07009882.7, 2007, Munich, Germany
267.
go back to reference I. Rašović, Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 33(7), 777–794 (2017)CrossRef I. Rašović, Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 33(7), 777–794 (2017)CrossRef
268.
go back to reference S. Prylutska, S. Politenkova, K. Afanasieva, et al., A nanocomplex of C60 fullerene with cisplatin: Design, characterization and toxicity. Beilstein J. Nanotechnol. 8, 1494–1501 (2017)CrossRef S. Prylutska, S. Politenkova, K. Afanasieva, et al., A nanocomplex of C60 fullerene with cisplatin: Design, characterization and toxicity. Beilstein J. Nanotechnol. 8, 1494–1501 (2017)CrossRef
269.
go back to reference N. Mar, L.E. Sansores, E. Ramos, R. Salcedo, Iron complexes of nanodiamond: Theoretical approach. Comput. Theor. Chem. 1035(1–5), 1 (2014)CrossRef N. Mar, L.E. Sansores, E. Ramos, R. Salcedo, Iron complexes of nanodiamond: Theoretical approach. Comput. Theor. Chem. 1035(1–5), 1 (2014)CrossRef
270.
go back to reference K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, and I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks. arXiv:1501.07632 [physics.optics] (2015). https://arxiv.org/abs/1501.07632 K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, and I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks. arXiv:1501.07632 [physics.optics] (2015). https://​arxiv.​org/​abs/​1501.​07632
271.
go back to reference K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes. Nanoscale 7, 4869–4874 (2015)CrossRef K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes. Nanoscale 7, 4869–4874 (2015)CrossRef
272.
go back to reference M.A. Ilyushin, A.S. Kozlov, A.V. Smirnov, A.S. Tver’yanovich, Y.S. Tver’yanovich, G.O. Abdrashitov, A.O. Aver’yanov, M.D. Bal’makov, The effect of carbon nanoparticles on the thermal and photolytic properties of the (5-nitrotetrazolato-N2) pentaammin-cobalt(III) perchlorate complex. Glas. Phys. Chem. 43(1), 111–113 (2017)CrossRef M.A. Ilyushin, A.S. Kozlov, A.V. Smirnov, A.S. Tver’yanovich, Y.S. Tver’yanovich, G.O. Abdrashitov, A.O. Aver’yanov, M.D. Bal’makov, The effect of carbon nanoparticles on the thermal and photolytic properties of the (5-nitrotetrazolato-N2) pentaammin-cobalt(III) perchlorate complex. Glas. Phys. Chem. 43(1), 111–113 (2017)CrossRef
274.
go back to reference G. Dördelmann, T. Meinhardt, T. Sowik, A. Krueger, U. Schatzschneider, CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. 48, 11528–11530 (2012)CrossRef G. Dördelmann, T. Meinhardt, T. Sowik, A. Krueger, U. Schatzschneider, CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. 48, 11528–11530 (2012)CrossRef
275.
go back to reference X. Zhao, S. Zhang, C. Bai, B. Li, Y. Li, L. Wang, R. Wen, M. Zhang, L. Ma, S. Li, Nano-diamond particles functionalized with single/double-arm amide–thiourea ligands for adsorption of metal ions. J. Colloid Interface Sci. 469, 109–119 (2016)CrossRef X. Zhao, S. Zhang, C. Bai, B. Li, Y. Li, L. Wang, R. Wen, M. Zhang, L. Ma, S. Li, Nano-diamond particles functionalized with single/double-arm amide–thiourea ligands for adsorption of metal ions. J. Colloid Interface Sci. 469, 109–119 (2016)CrossRef
276.
go back to reference L.S. Sundar, M.K. Singh, E. Venkata Ramana, B. Singh, J. Gracio, A.C.M. Sousa, Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci. Rep. 4, 4039, 14 pp (2014) L.S. Sundar, M.K. Singh, E. Venkata Ramana, B. Singh, J. Gracio, A.C.M. Sousa, Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci. Rep. 4, 4039, 14 pp (2014)
277.
go back to reference C.-L. Lin, C.-H. Lin, H.-C. Chang, M.-C. Su, Protein attachment on nanodiamonds. J. Phys. Chem. A 119(28), 7704–7711 (2015)CrossRef C.-L. Lin, C.-H. Lin, H.-C. Chang, M.-C. Su, Protein attachment on nanodiamonds. J. Phys. Chem. A 119(28), 7704–7711 (2015)CrossRef
278.
go back to reference H.B. Na, T. Hyeon, Nanostructured T1 MRI contrast agents. J. Mater. Chem. 19, 6267–6273 (2009)CrossRef H.B. Na, T. Hyeon, Nanostructured T1 MRI contrast agents. J. Mater. Chem. 19, 6267–6273 (2009)CrossRef
279.
go back to reference L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2009)CrossRef L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2009)CrossRef
281.
go back to reference Y. Zhu, Y. Zhang, G. Shi, et al., Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12(2), 11 pp (2015) Y. Zhu, Y. Zhang, G. Shi, et al., Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12(2), 11 pp (2015)
282.
go back to reference Y.Y. Hui, C.-L. Cheng, H.-C. Chang, Nanodiamonds for optical bioimaging. J. Phys. D. Appl. Phys. 43, 374021 (2010)CrossRef Y.Y. Hui, C.-L. Cheng, H.-C. Chang, Nanodiamonds for optical bioimaging. J. Phys. D. Appl. Phys. 43, 374021 (2010)CrossRef
283.
go back to reference V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol 7, 11–23 (2012)CrossRef V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol 7, 11–23 (2012)CrossRef
284.
go back to reference A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134, 1751–1764 (2009)CrossRef A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134, 1751–1764 (2009)CrossRef
285.
go back to reference Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4, 207–218 (2009)CrossRef Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4, 207–218 (2009)CrossRef
286.
go back to reference L. Echegoyen, A. Ortiz, M.N. Chaur, A.J. Palkar, Carbon nano onions, in Chemistry of Nanocarbons, ed. by T. Akasaka, S. Nagase, F. Wudl, (Wiley, Chichester, 2010)CrossRef L. Echegoyen, A. Ortiz, M.N. Chaur, A.J. Palkar, Carbon nano onions, in Chemistry of Nanocarbons, ed. by T. Akasaka, S. Nagase, F. Wudl, (Wiley, Chichester, 2010)CrossRef
287.
go back to reference J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)CrossRef J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)CrossRef
288.
go back to reference J. Bartelmess, M. Frasconi, P.B. Balakrishnan, A. Signorelli, L. Echegoyen, T. Pellegrino, S. Giordani, Non-covalent functionalization of carbon nanoonions with pyrene–BODIPY dyads for biological imaging. RSC Adv. 5, 50253–50258 (2015)CrossRef J. Bartelmess, M. Frasconi, P.B. Balakrishnan, A. Signorelli, L. Echegoyen, T. Pellegrino, S. Giordani, Non-covalent functionalization of carbon nanoonions with pyrene–BODIPY dyads for biological imaging. RSC Adv. 5, 50253–50258 (2015)CrossRef
289.
go back to reference A. Palkar, A. Kumbhar, A.J. Athans, L. Echegoyen, Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chem. Mater. 20, 1685–1687 (2008)CrossRef A. Palkar, A. Kumbhar, A.J. Athans, L. Echegoyen, Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chem. Mater. 20, 1685–1687 (2008)CrossRef
290.
go back to reference V. Spampinato, G. Ceccone, Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 10, 019006 (2015)CrossRef V. Spampinato, G. Ceccone, Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 10, 019006 (2015)CrossRef
291.
go back to reference C.T. Cioffi, A. Palkar, F. Melin, A. Kumbhar, L. Echegoyen, M. Melle-Franco, F. Zerbetto, G.M.A. Rahman, C. Ehli, V. Sgobba, D.M. Guldi, M. Prato, Chem. Eur. J. 15, 4419–4427 (2009)CrossRef C.T. Cioffi, A. Palkar, F. Melin, A. Kumbhar, L. Echegoyen, M. Melle-Franco, F. Zerbetto, G.M.A. Rahman, C. Ehli, V. Sgobba, D.M. Guldi, M. Prato, Chem. Eur. J. 15, 4419–4427 (2009)CrossRef
292.
go back to reference M.B. Seymour, C. Su, Y. Gao, Y. Lu, Y. Li, Characterization of carbon nano-onions for heavy metal ion remediation. J. Nanopart. Res. 14, 1087 (2012)CrossRef M.B. Seymour, C. Su, Y. Gao, Y. Lu, Y. Li, Characterization of carbon nano-onions for heavy metal ion remediation. J. Nanopart. Res. 14, 1087 (2012)CrossRef
293.
go back to reference Y. Li, M. Seymour, Fullerenes and carbon nano-onions for environmental application, in Nanotechnology for Water Treatment and Purification, Part of the lecture notes in nanoscale science and technology book series (LNNST), vol. 22, (Springer, Cham, 2014), pp. 145–158 Y. Li, M. Seymour, Fullerenes and carbon nano-onions for environmental application, in Nanotechnology for Water Treatment and Purification, Part of the lecture notes in nanoscale science and technology book series (LNNST), vol. 22, (Springer, Cham, 2014), pp. 145–158
294.
go back to reference M. Klose, K. Pinkert, M. Zier, M. Uhlemann, et al., Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon 79, 302–309 (2014)CrossRef M. Klose, K. Pinkert, M. Zier, M. Uhlemann, et al., Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon 79, 302–309 (2014)CrossRef
295.
go back to reference C.P. Hauser, N. Jagielski, J. Heller, D. Hinderberger, H.W. Spiess, I. Lieberwirth, C.K. Weiss, K. Landfester, Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion. Langmuir 27, 12859–12868 (2011)CrossRef C.P. Hauser, N. Jagielski, J. Heller, D. Hinderberger, H.W. Spiess, I. Lieberwirth, C.K. Weiss, K. Landfester, Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion. Langmuir 27, 12859–12868 (2011)CrossRef
296.
go back to reference A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, J.M. Razal, R. Lahoz, M. Laguna, G.F. de la Fuente, E. Muñoz, Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRef A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, J.M. Razal, R. Lahoz, M. Laguna, G.F. de la Fuente, E. Muñoz, Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRef
297.
go back to reference K. Kongpatpanich, S. Horike, Y.-i. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem. Eur. J. 21, 13278–13283 (2015)CrossRef K. Kongpatpanich, S. Horike, Y.-i. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem. Eur. J. 21, 13278–13283 (2015)CrossRef
298.
go back to reference A. Peña, A. Guerrero, J. Puerta, J.L. Brito, T.K. Heckel, Characterisation of carbon nanotube foam for improved gas storage capability, in Proceedings of the SEM Annual Conference June 7–10, 2010 Indianapolis, 2010 Society for Experimental Mechanics Inc A. Peña, A. Guerrero, J. Puerta, J.L. Brito, T.K. Heckel, Characterisation of carbon nanotube foam for improved gas storage capability, in Proceedings of the SEM Annual Conference June 7–10, 2010 Indianapolis, 2010 Society for Experimental Mechanics Inc
299.
go back to reference S.R. Stoyanov, P. Král, Multifunctional metal-doped carbon nanocapsules. J. Chem. Phys. 129, 234702 (2008)CrossRef S.R. Stoyanov, P. Král, Multifunctional metal-doped carbon nanocapsules. J. Chem. Phys. 129, 234702 (2008)CrossRef
300.
go back to reference A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33(5), 1455–1461 (2012)CrossRef A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33(5), 1455–1461 (2012)CrossRef
301.
go back to reference T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 2012, Article ID 613746, 6 pp (2012) T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 2012, Article ID 613746, 6 pp (2012)
302.
go back to reference D. Jain, A. Winkel, R. Wilhelm, Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors. Small 2(6), 752–755 (2006)CrossRef D. Jain, A. Winkel, R. Wilhelm, Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors. Small 2(6), 752–755 (2006)CrossRef
303.
go back to reference B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRef B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRef
304.
go back to reference L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRef L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRef
305.
go back to reference D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, O.Y. Podyacheva, F.S. Hage, Q.M. Ramasse, U. Bangert, L.G. Bulusheva, Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)CrossRef D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, O.Y. Podyacheva, F.S. Hage, Q.M. Ramasse, U. Bangert, L.G. Bulusheva, Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)CrossRef
306.
go back to reference T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Modification of carbon nanofibres for immobilisation of metal complexes. A case study with rhodium-anthranilic acid. Chem. Eur. J. 8(13), 2868–2878 (2002)CrossRef T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Modification of carbon nanofibres for immobilisation of metal complexes. A case study with rhodium-anthranilic acid. Chem. Eur. J. 8(13), 2868–2878 (2002)CrossRef
307.
go back to reference B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)CrossRef B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)CrossRef
308.
go back to reference C. Wang, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)CrossRef C. Wang, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)CrossRef
309.
go back to reference W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRef W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRef
310.
go back to reference J. Shuia, C. Chen, L. Grabstanowicz, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)CrossRef J. Shuia, C. Chen, L. Grabstanowicz, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)CrossRef
311.
go back to reference J. Zhang, S.-H. Yu, Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)CrossRef J. Zhang, S.-H. Yu, Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)CrossRef
312.
go back to reference A. Sciortino, A. Madonia, M. Gazzetto, et al., The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. Nanoscale 9, 11902–11911 (2017)CrossRef A. Sciortino, A. Madonia, M. Gazzetto, et al., The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. Nanoscale 9, 11902–11911 (2017)CrossRef
313.
go back to reference C. Liu, B. Tang, S. Zhang, et al., Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence. J. Phys. Chem. C 122, 3662–3668 (2018)CrossRef C. Liu, B. Tang, S. Zhang, et al., Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence. J. Phys. Chem. C 122, 3662–3668 (2018)CrossRef
314.
go back to reference N. Dhenadhayalan, K.-C. Lin, Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci. Rep. 5, 10012 (2015)CrossRef N. Dhenadhayalan, K.-C. Lin, Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci. Rep. 5, 10012 (2015)CrossRef
315.
go back to reference B. Mu, P.M. Schoenecker, K.S. Walton, Gas adsorption study on mesoporous metal−organic framework UMCM-1. J. Phys. Chem. C 114(14), 6464–6471 (2010)CrossRef B. Mu, P.M. Schoenecker, K.S. Walton, Gas adsorption study on mesoporous metal−organic framework UMCM-1. J. Phys. Chem. C 114(14), 6464–6471 (2010)CrossRef
316.
go back to reference J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: Enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)CrossRef J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: Enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)CrossRef
317.
go back to reference S. Kim, J. Kyo Seo, J. Hong Park, et al., White-light emission of blue-luminescent graphene quantum dots by europium (III)complex incorporation. Carbon 124, 479–485 (2017)CrossRef S. Kim, J. Kyo Seo, J. Hong Park, et al., White-light emission of blue-luminescent graphene quantum dots by europium (III)complex incorporation. Carbon 124, 479–485 (2017)CrossRef
318.
go back to reference L. Wang, S. Tricard, P. Yue, et al., Polypyrrole and graphene quantum dots@Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosens. Bioelectron. 77, 1112–1118 (2016)CrossRef L. Wang, S. Tricard, P. Yue, et al., Polypyrrole and graphene quantum dots@Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosens. Bioelectron. 77, 1112–1118 (2016)CrossRef
319.
go back to reference G. Fomo, O.J. Achadu, T. Nyokong, One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the nvestigation of their photophysical properties. J. Mater. Sci. 53, 538–548 (2018)CrossRef G. Fomo, O.J. Achadu, T. Nyokong, One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the nvestigation of their photophysical properties. J. Mater. Sci. 53, 538–548 (2018)CrossRef
320.
go back to reference Z. Tian, X. Yao, K. Ma, et al., Metal−organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega 2, 1249–1258 (2017)CrossRef Z. Tian, X. Yao, K. Ma, et al., Metal−organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega 2, 1249–1258 (2017)CrossRef
321.
go back to reference B. Zheng, C. Wang, X. Xin, et al., Electron transfer from graphene quantum dots to the copper complex enhances its nuclease activity. J. Phys. Chem. C 118(14), 7637–7642 (2014)CrossRef B. Zheng, C. Wang, X. Xin, et al., Electron transfer from graphene quantum dots to the copper complex enhances its nuclease activity. J. Phys. Chem. C 118(14), 7637–7642 (2014)CrossRef
322.
go back to reference J. Marwan, T. Addou, D. Belanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17, 2395–2403 (2005)CrossRef J. Marwan, T. Addou, D. Belanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17, 2395–2403 (2005)CrossRef
323.
go back to reference L. Fotouhi, M. Naseri, Recent electroanalytical studies of metal-organic frameworks: A mini-review. Crit. Rev. Anal. Chem. 46(4), 323–331 (2015)CrossRef L. Fotouhi, M. Naseri, Recent electroanalytical studies of metal-organic frameworks: A mini-review. Crit. Rev. Anal. Chem. 46(4), 323–331 (2015)CrossRef
324.
go back to reference O. Fatibello-Filho, E.R. Dockal, L.H. Marcolino-Junior, M.F.S. Teixeira, Electrochemical modified electrodes based on metal-salen complexes. Anal. Lett. 40, 1825–1852 (2007)CrossRef O. Fatibello-Filho, E.R. Dockal, L.H. Marcolino-Junior, M.F.S. Teixeira, Electrochemical modified electrodes based on metal-salen complexes. Anal. Lett. 40, 1825–1852 (2007)CrossRef
325.
go back to reference G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)CrossRef G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)CrossRef
326.
go back to reference W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRef W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRef
327.
go back to reference S. Zhao, Y. Wang, J. Dong et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 1, Art. No. 16184 (2016) S. Zhao, Y. Wang, J. Dong et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 1, Art. No. 16184 (2016)
328.
go back to reference A. Ciszewski, G. Milczarek, Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media. J. Electroanal. Chem. 426, 125–130 (1997)CrossRef A. Ciszewski, G. Milczarek, Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media. J. Electroanal. Chem. 426, 125–130 (1997)CrossRef
329.
go back to reference C. Canales, F. Varas-Concha, T.E. Mallouk, G. Ramírez, Enhanced electrocatalytic hydrogen evolution reaction: Supramolecular assemblies of metalloporphyrins on glassy carbonelectrodes. Appl. Catal. B Environ. 188, 169–176 (2016)CrossRef C. Canales, F. Varas-Concha, T.E. Mallouk, G. Ramírez, Enhanced electrocatalytic hydrogen evolution reaction: Supramolecular assemblies of metalloporphyrins on glassy carbonelectrodes. Appl. Catal. B Environ. 188, 169–176 (2016)CrossRef
330.
go back to reference Q. He, G. Wu, K. Liu, S. Khene, Q. Li, T. Mugadza, E. Deunf, T. Nyokong, S.W. Chen, Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media. ChemElectroChem 1, 1508–1515 (2014)CrossRef Q. He, G. Wu, K. Liu, S. Khene, Q. Li, T. Mugadza, E. Deunf, T. Nyokong, S.W. Chen, Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media. ChemElectroChem 1, 1508–1515 (2014)CrossRef
331.
go back to reference S. Brüller, H.-W. Liang, U.I. Kramm, J.W. Krumpfer, X. Feng, K. Müllen, Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 3, 23799–23808 (2015)CrossRef S. Brüller, H.-W. Liang, U.I. Kramm, J.W. Krumpfer, X. Feng, K. Müllen, Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 3, 23799–23808 (2015)CrossRef
332.
go back to reference K. Calfumán, M.J. Aguirre, D. Villagra, C. Yañez, C. Arévalo, B. Matsuhiro, L. Mendoza, M. Isaacs, Nafion/tetraruthenated porphyrin glassy carbon-modified electrode: Characterization and voltammetric studies of sulfite oxidation in water–ethanol solutions. J. Solid State Electrochem. 14, 1065–1072 (2010)CrossRef K. Calfumán, M.J. Aguirre, D. Villagra, C. Yañez, C. Arévalo, B. Matsuhiro, L. Mendoza, M. Isaacs, Nafion/tetraruthenated porphyrin glassy carbon-modified electrode: Characterization and voltammetric studies of sulfite oxidation in water–ethanol solutions. J. Solid State Electrochem. 14, 1065–1072 (2010)CrossRef
334.
go back to reference S. Realista, P. Ramgi, B. de P Cardoso, A.I. Melato, A.S. Viana, M.J. Calhorda, P.N. Martinho, Heterodinuclear Ni(II) and Cu(II) Schiff base complexes and their activity in oxygen reduction. Dalton Trans. 45, 14725–14733 (2016)CrossRef S. Realista, P. Ramgi, B. de P Cardoso, A.I. Melato, A.S. Viana, M.J. Calhorda, P.N. Martinho, Heterodinuclear Ni(II) and Cu(II) Schiff base complexes and their activity in oxygen reduction. Dalton Trans. 45, 14725–14733 (2016)CrossRef
335.
go back to reference S. Praveen Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, T. Dhanasekaran, A. Padmanaban, V. Narayanan, Synthesis, characterization of nickel Schiff base complex and its electrocatalytic sensing nature for Hg+2. Third National Conference on Advances in Chemistry (NCAC–2015). Int. J. Innov. Res. Sci. Eng. Technol, 4(Special Issue 1) (2015) S. Praveen Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, T. Dhanasekaran, A. Padmanaban, V. Narayanan, Synthesis, characterization of nickel Schiff base complex and its electrocatalytic sensing nature for Hg+2. Third National Conference on Advances in Chemistry (NCAC–2015). Int. J. Innov. Res. Sci. Eng. Technol, 4(Special Issue 1) (2015)
336.
go back to reference O.V. Levin, M.P. Karushev, A.M. Timonov, E.V. Alekseeva, S. Zhang, V.V. Malev, Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim. Acta 109, 153–161 (2013)CrossRef O.V. Levin, M.P. Karushev, A.M. Timonov, E.V. Alekseeva, S. Zhang, V.V. Malev, Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim. Acta 109, 153–161 (2013)CrossRef
337.
go back to reference L. Abdullah Alshahrani, X. Li, H. Luo, The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-β-Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors 14, 22274–22284 (2014)CrossRef L. Abdullah Alshahrani, X. Li, H. Luo, The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-β-Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors 14, 22274–22284 (2014)CrossRef
338.
go back to reference C.A. Caro, L. Lillo, F.J. Valenzuela, G. Cabello, E. Lang, D. Vallejos, C. Castillo, Oxidation of melatonin on a glassy carbon electrode modified with metallic glucosamines. Synthesis and characterization. J. Solid State Electrochem. 20, 993–1000 (2016)CrossRef C.A. Caro, L. Lillo, F.J. Valenzuela, G. Cabello, E. Lang, D. Vallejos, C. Castillo, Oxidation of melatonin on a glassy carbon electrode modified with metallic glucosamines. Synthesis and characterization. J. Solid State Electrochem. 20, 993–1000 (2016)CrossRef
339.
go back to reference P. Kumar Sonkar, V. Ganesan, S. Abraham John, D. Kumar Yadava, R. Gupta, Non-enzymatic electrochemical sensing platform based on metal complex immobilized carbon nanotubes for glucose determination. RSC Adv. 6, 107094–107103 (2016)CrossRef P. Kumar Sonkar, V. Ganesan, S. Abraham John, D. Kumar Yadava, R. Gupta, Non-enzymatic electrochemical sensing platform based on metal complex immobilized carbon nanotubes for glucose determination. RSC Adv. 6, 107094–107103 (2016)CrossRef
340.
go back to reference Y. Wang, Y. Wu, J. Xie, X. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sensors Actuators B 177, 1161–1166 (2013)CrossRef Y. Wang, Y. Wu, J. Xie, X. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sensors Actuators B 177, 1161–1166 (2013)CrossRef
341.
go back to reference X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, Highly dispersible and stable copper terephthalate metal−organic framework−graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 6, 11573–11580 (2014)CrossRef X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, Highly dispersible and stable copper terephthalate metal−organic framework−graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 6, 11573–11580 (2014)CrossRef
342.
go back to reference Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V.M. Fernandez, E. Lorenzo, H.D. Abruna, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Anal. Chem. 68, 3688–3696 (1998)CrossRef Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V.M. Fernandez, E. Lorenzo, H.D. Abruna, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Anal. Chem. 68, 3688–3696 (1998)CrossRef
343.
go back to reference B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catechol amines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 39(1), 124–132 (2013)CrossRef B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catechol amines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 39(1), 124–132 (2013)CrossRef
344.
go back to reference A. Yeşildağ, D. Ekinci, Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces. Electrochim. Acta 55, 7000–7009 (2010)CrossRef A. Yeşildağ, D. Ekinci, Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces. Electrochim. Acta 55, 7000–7009 (2010)CrossRef
345.
go back to reference D.Z. Zee, T. Chantarojsiri, J.R. Long, C.J. Chang, Metal−polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. (Published as part of the Accounts of Chemical Research special issue “Earth Abundant Metals in Homogeneous Catalysis”). Acc. Chem. Res. 48(7), 2027–2036 (2015)CrossRef D.Z. Zee, T. Chantarojsiri, J.R. Long, C.J. Chang, Metal−polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. (Published as part of the Accounts of Chemical Research special issue “Earth Abundant Metals in Homogeneous Catalysis”). Acc. Chem. Res. 48(7), 2027–2036 (2015)CrossRef
346.
go back to reference V. Ramírez-Delgado, G. Osorio-Monreal, L.F. Hernández-Ayala, Y. Reyes-Vidal, J.C. García-Ramos, L. Ruiz-Azuara, L. Ortiz-Frade, Electrochemical behavior of Ni(II) complexes with N2S2 and N6 ligands as potential catalysts in hydrogen evolution reaction. J. Mex. Chem. Soc. 59(4), 294–301 (2015) V. Ramírez-Delgado, G. Osorio-Monreal, L.F. Hernández-Ayala, Y. Reyes-Vidal, J.C. García-Ramos, L. Ruiz-Azuara, L. Ortiz-Frade, Electrochemical behavior of Ni(II) complexes with N2S2 and N6 ligands as potential catalysts in hydrogen evolution reaction. J. Mex. Chem. Soc. 59(4), 294–301 (2015)
347.
go back to reference O.R. Luca, J.D. Blakemore, S.J. Konezny, et al., Organometallic Ni pincer complexes for the electrocatalytic production of hydrogen. Inorg Chem 51, 8704–8709 (2012)CrossRef O.R. Luca, J.D. Blakemore, S.J. Konezny, et al., Organometallic Ni pincer complexes for the electrocatalytic production of hydrogen. Inorg Chem 51, 8704–8709 (2012)CrossRef
348.
go back to reference J.C. Swarts, D. Laws, W.E. Geiger, An organometallic electrode based on covalent attachment of the cobaltocenium group to carbon. Organometallics 24, 341–343 (2005)CrossRef J.C. Swarts, D. Laws, W.E. Geiger, An organometallic electrode based on covalent attachment of the cobaltocenium group to carbon. Organometallics 24, 341–343 (2005)CrossRef
349.
go back to reference A. Ayadi, A. El Alamy, O. Alévêque, M. Allain, N. Zouari, M. Bouachrine, A. El-Ghayoury, Tetrathiafulvalene-based azine ligands for anion and metal cation coordination. Beilstein J. Org. Chem. 11, 1379–1391 (2015)CrossRef A. Ayadi, A. El Alamy, O. Alévêque, M. Allain, N. Zouari, M. Bouachrine, A. El-Ghayoury, Tetrathiafulvalene-based azine ligands for anion and metal cation coordination. Beilstein J. Org. Chem. 11, 1379–1391 (2015)CrossRef
350.
go back to reference O. Buriez, L.M. Moretto, P. Ugo, Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes. Electrochim. Acta 52, 958–964 (2006)CrossRef O. Buriez, L.M. Moretto, P. Ugo, Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes. Electrochim. Acta 52, 958–964 (2006)CrossRef
351.
go back to reference L. Luzuriaga, M.F. Cerdá, Analysis of the interaction between [Ru(phenanthroline)3]2+ and bovine serum albumin. Adv Biol. Chem. 2, 262–267 (2012)CrossRef L. Luzuriaga, M.F. Cerdá, Analysis of the interaction between [Ru(phenanthroline)3]2+ and bovine serum albumin. Adv Biol. Chem. 2, 262–267 (2012)CrossRef
352.
go back to reference Z. Zheng, R. Wu, Y. Xiao, H.E.M. Christensen, F. Zhao, J. Zhang, Electrochemical catalysis of inorganic complex K4[Fe(CN)6] by Shewanella oneidensis MR-1, in Abstract from Forth EuCheMS Inorganic Chemistry Conference (EICC-4), Copenhagen, 2017 Z. Zheng, R. Wu, Y. Xiao, H.E.M. Christensen, F. Zhao, J. Zhang, Electrochemical catalysis of inorganic complex K4[Fe(CN)6] by Shewanella oneidensis MR-1, in Abstract from Forth EuCheMS Inorganic Chemistry Conference (EICC-4), Copenhagen, 2017
353.
go back to reference K.S. Shaju, T.K. Joby, P.R. Vinod, K. Nimmy, Spectral and cyclic voltammetric studies on Cu(II)-Schiff base complex derived from anthracene-9(10H)-one. IOSR J. Appl. Chem. (IOSR-JAC) 7(10), 64–68 (2014)CrossRef K.S. Shaju, T.K. Joby, P.R. Vinod, K. Nimmy, Spectral and cyclic voltammetric studies on Cu(II)-Schiff base complex derived from anthracene-9(10H)-one. IOSR J. Appl. Chem. (IOSR-JAC) 7(10), 64–68 (2014)CrossRef
354.
go back to reference M. Landman, J. Conradie, P.H. van Rooyen, Computational chemistry insights in the REDOX Behaviour of Cr and W Fischer carbene complexes, in 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2015). IOP Publishing Journal of Physics: Conference Series, 633, 012068, 2015 M. Landman, J. Conradie, P.H. van Rooyen, Computational chemistry insights in the REDOX Behaviour of Cr and W Fischer carbene complexes, in 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2015). IOP Publishing Journal of Physics: Conference Series, 633, 012068, 2015
355.
go back to reference H. Wu, J. Yuan, B. Qi, J. Kong, F. Kou, F. Jia, X. Fan, Y. Wang, A seven-coordinate manganese(II) complex formed with the tripodal tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine. Z. Naturforsch. 65b, 1097–1100 (2010)CrossRef H. Wu, J. Yuan, B. Qi, J. Kong, F. Kou, F. Jia, X. Fan, Y. Wang, A seven-coordinate manganese(II) complex formed with the tripodal tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine. Z. Naturforsch. 65b, 1097–1100 (2010)CrossRef
356.
go back to reference N. Ramalakshmi, S. Muthukumar, B. Marichamy, Electrochemical study of Mn2+ Redox system on 4-hydroxybenzylidene-Carbamide-CTAB modified glassy carbon electrode. Res. J. Chem. Sci. 3(8), 29–37 (2013) N. Ramalakshmi, S. Muthukumar, B. Marichamy, Electrochemical study of Mn2+ Redox system on 4-hydroxybenzylidene-Carbamide-CTAB modified glassy carbon electrode. Res. J. Chem. Sci. 3(8), 29–37 (2013)
357.
go back to reference E.S. Wiedner, J.Y. Yang, W.G. Dougherty, W.S. Kassel, R.M. Bullock, M.R. DuBois, D.L. DuBois, Comparison of cobalt and nickel complexes with sterically demanding cyclic diphosphine ligands: Electrocatalytic H2 production by [Co(PtBu2NPh2)(CH3CN)3](BF4)2. Organometallics 29, 5390–5401 (2010)CrossRef E.S. Wiedner, J.Y. Yang, W.G. Dougherty, W.S. Kassel, R.M. Bullock, M.R. DuBois, D.L. DuBois, Comparison of cobalt and nickel complexes with sterically demanding cyclic diphosphine ligands: Electrocatalytic H2 production by [Co(PtBu2NPh2)(CH3CN)3](BF4)2. Organometallics 29, 5390–5401 (2010)CrossRef
358.
go back to reference K. Jong Lee, Y. Il, S. Sung Lee, B. Yong Lee, Iron(II) tris(3-bromo-1,10-phenanthroline) complex: Synthesis, crystal structure and electropolymerization. Bull. Kor. Chem. Soc. 23(3), 399–403 (2002)CrossRef K. Jong Lee, Y. Il, S. Sung Lee, B. Yong Lee, Iron(II) tris(3-bromo-1,10-phenanthroline) complex: Synthesis, crystal structure and electropolymerization. Bull. Kor. Chem. Soc. 23(3), 399–403 (2002)CrossRef
359.
go back to reference K.N. Kumar, G. Venkatachalam, R. Ramesh, Y. Liu, Half-sandwich para-cymene ruthenium(II) naphthylazophenolato complexes: Synthesis, molecular structure, light emission, redox behavior and catalytic oxidation properties. Polyhedron 27, 157–166 (2008)CrossRef K.N. Kumar, G. Venkatachalam, R. Ramesh, Y. Liu, Half-sandwich para-cymene ruthenium(II) naphthylazophenolato complexes: Synthesis, molecular structure, light emission, redox behavior and catalytic oxidation properties. Polyhedron 27, 157–166 (2008)CrossRef
360.
go back to reference A. Ciszewski, I. Stepniak, Non-enzymatic sensing of glucose using glassy carbon electrode modified with organometallic complex of nickel. Int. J. Electrochem. Sci. 10, 8298–8307 (2015) A. Ciszewski, I. Stepniak, Non-enzymatic sensing of glucose using glassy carbon electrode modified with organometallic complex of nickel. Int. J. Electrochem. Sci. 10, 8298–8307 (2015)
361.
go back to reference Md Sohel. Rana, M. Arifur Rahman, A.M. Shafiqul Alam, A CV study of copper complexation with guanine using glassy carbon electrode in aqueous medium. ISRN Electrochem, 2014, Article ID 308382, 7 pp (2014) Md Sohel. Rana, M. Arifur Rahman, A.M. Shafiqul Alam, A CV study of copper complexation with guanine using glassy carbon electrode in aqueous medium. ISRN Electrochem, 2014, Article ID 308382, 7 pp (2014)
362.
go back to reference Z.-N. Gao, J.-F. Ma, W.-Y. Liu, Electrocatalytic oxidation of sulfite by acetylferrocene at glassy carbon electrode. Appl. Organomet. Chem. 19, 1149–1154 (2005)CrossRef Z.-N. Gao, J.-F. Ma, W.-Y. Liu, Electrocatalytic oxidation of sulfite by acetylferrocene at glassy carbon electrode. Appl. Organomet. Chem. 19, 1149–1154 (2005)CrossRef
363.
go back to reference Q. Sun, L. Cai, S. Wang, R. Widmer, H. Ju, J. Zhu, L. Li, Y. He, P. Ruffieux, R. Fasel, W. Xu, Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016)CrossRef Q. Sun, L. Cai, S. Wang, R. Widmer, H. Ju, J. Zhu, L. Li, Y. He, P. Ruffieux, R. Fasel, W. Xu, Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016)CrossRef
364.
go back to reference R.J. Lagow, J.J. Kampa, H.-C. Wei, S.L. Battle, J.W. Genge, D.A. Laude, C.J. Harper, R. Bau, R.C. Stevens, J.F. Haw, E. Munson, Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 267, 362–367 (1995)CrossRef R.J. Lagow, J.J. Kampa, H.-C. Wei, S.L. Battle, J.W. Genge, D.A. Laude, C.J. Harper, R. Bau, R.C. Stevens, J.F. Haw, E. Munson, Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 267, 362–367 (1995)CrossRef
365.
go back to reference W.A. Chalifoux, R.R. Tykwinski, Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967–971 (2010)CrossRef W.A. Chalifoux, R.R. Tykwinski, Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967–971 (2010)CrossRef
366.
go back to reference S. Eisler, A.D. Slepkov, E. Elliott, T. Luu, R. McDonald, F.A. Hegmann, R.R. Tykwinski, Polyynes as a model for carbyne: Synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005)CrossRef S. Eisler, A.D. Slepkov, E. Elliott, T. Luu, R. McDonald, F.A. Hegmann, R.R. Tykwinski, Polyynes as a model for carbyne: Synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005)CrossRef
367.
go back to reference Q. Zheng, J.A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: Readily isolable complexes in which C16-C28 polyynediyl chains span two platinum atoms. J. Am. Chem. Soc. 127, 10508–10509 (2005)CrossRef Q. Zheng, J.A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: Readily isolable complexes in which C16-C28 polyynediyl chains span two platinum atoms. J. Am. Chem. Soc. 127, 10508–10509 (2005)CrossRef
368.
go back to reference U. Schubert, Syntheses of transition metal–carbyne complexes, in The Metal-Carbon Bond, ed. by F. R. Hartley, S. Patai, vol. 1, (Wiley, Chichester, 1983) U. Schubert, Syntheses of transition metal–carbyne complexes, in The Metal-Carbon Bond, ed. by F. R. Hartley, S. Patai, vol. 1, (Wiley, Chichester, 1983)
369.
go back to reference R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6−C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) endgroups. J. Am. Chem. Soc. 122(5), 810–822 (2000)CrossRef R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6−C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) endgroups. J. Am. Chem. Soc. 122(5), 810–822 (2000)CrossRef
370.
go back to reference Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, Diruthenium–polyyn-diyl–diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136(34), 12174–12183 (2014)CrossRef Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, Diruthenium–polyyn-diyl–diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136(34), 12174–12183 (2014)CrossRef
371.
go back to reference A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*−(C≡C)6−Fp* [Fp*= Fe(η5-C5Me5)(CO)2], the longest structurally characterized polyynediyl complex. Organometallics 18(16), 3241–3244 (1999)CrossRef A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*−(C≡C)6−Fp* [Fp*= Fe(η5-C5Me5)(CO)2], the longest structurally characterized polyynediyl complex. Organometallics 18(16), 3241–3244 (1999)CrossRef
372.
go back to reference B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. 21, 17769–17778 (2015)CrossRef B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. 21, 17769–17778 (2015)CrossRef
373.
go back to reference R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6-C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) end groups. J. Am. Chem. Soc. 122, 810–822 (2000)CrossRef R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6-C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) end groups. J. Am. Chem. Soc. 122, 810–822 (2000)CrossRef
374.
go back to reference A. Kucherik, S. Kutrovskaya, A. Osipov, I. Skryabin, S. Arakelian, Metal-carbon nanoclusters for SERS, in IOP Conf. Series: Journal of Physics: Conf. Series, vol. 784, 012031 International Symposium Physics, Engineering and Technologies for Bio-Medicine, 2017 A. Kucherik, S. Kutrovskaya, A. Osipov, I. Skryabin, S. Arakelian, Metal-carbon nanoclusters for SERS, in IOP Conf. Series: Journal of Physics: Conf. Series, vol. 784, 012031 International Symposium Physics, Engineering and Technologies for Bio-Medicine, 2017
375.
go back to reference S. Arakelian, S. Kutrovskaya, A. Kucherik, A. Osipov, A. Povolotckaia, A. Povolotskiy, A. Manshina, Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt. Quant. Electron. 48, 505 (2016)CrossRef S. Arakelian, S. Kutrovskaya, A. Kucherik, A. Osipov, A. Povolotckaia, A. Povolotskiy, A. Manshina, Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt. Quant. Electron. 48, 505 (2016)CrossRef
376.
go back to reference B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. Eur. J. 21, 17769–17778 (2015)CrossRef B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. Eur. J. 21, 17769–17778 (2015)CrossRef
377.
go back to reference Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, T. Ren, Diruthenium−polyyn-diyl−diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136, 12174–12183 (2014)CrossRef Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, T. Ren, Diruthenium−polyyn-diyl−diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136, 12174–12183 (2014)CrossRef
378.
go back to reference A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*-(CtC)6-Fp* [(Fp*)Fe(η5-C5Me5)(CO)5], the longest structurally characterized polyynediyl Complex. Organometallics 18, 3241–3244 (1999)CrossRef A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*-(CtC)6-Fp* [(Fp*)Fe(η5-C5Me5)(CO)5], the longest structurally characterized polyynediyl Complex. Organometallics 18, 3241–3244 (1999)CrossRef
379.
go back to reference M.I. Bruce, N.N. Zaitseva, B.K. Nicholson, B.W. Skelton, A.H. White, Syntheses and molecular structures of some compounds containing many-atom chains end-capped by tricobalt carbonyl clusters. J. Organomet. Chem. 693, 2887–2897 (2008)CrossRef M.I. Bruce, N.N. Zaitseva, B.K. Nicholson, B.W. Skelton, A.H. White, Syntheses and molecular structures of some compounds containing many-atom chains end-capped by tricobalt carbonyl clusters. J. Organomet. Chem. 693, 2887–2897 (2008)CrossRef
380.
go back to reference M.E. Vol’pin, Y.N. Novikov, Coordination chemistry of graphite. Pure Appl. Chem. 60(8), 1133–1140 (1988)CrossRef M.E. Vol’pin, Y.N. Novikov, Coordination chemistry of graphite. Pure Appl. Chem. 60(8), 1133–1140 (1988)CrossRef
381.
go back to reference Y. Wang, Y. Wu, H. Ge, et al., Fabrication of metal-organic frameworks and graphite oxide hybrid composites for solid-phase extraction and preconcentration of luteolin. Talanta 122, 91–96 (2014)CrossRef Y. Wang, Y. Wu, H. Ge, et al., Fabrication of metal-organic frameworks and graphite oxide hybrid composites for solid-phase extraction and preconcentration of luteolin. Talanta 122, 91–96 (2014)CrossRef
382.
go back to reference Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu, J. Hu, Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity. Langmuir 31(26), 7410–7417 (2015)CrossRef Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu, J. Hu, Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity. Langmuir 31(26), 7410–7417 (2015)CrossRef
383.
go back to reference Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–47 (2014)CrossRef Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–47 (2014)CrossRef
384.
go back to reference Z. Zhang, H. Wang, X. Chen, et al., Chromium-based metal–organic framework/mesoporous carbon composite: Synthesis, characterization and CO2 adsorption. Adsorption 21(1–2), 77–86 (2015)CrossRef Z. Zhang, H. Wang, X. Chen, et al., Chromium-based metal–organic framework/mesoporous carbon composite: Synthesis, characterization and CO2 adsorption. Adsorption 21(1–2), 77–86 (2015)CrossRef
385.
go back to reference S. Zhang, Z. Du, G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115, 32–39 (2013)CrossRef S. Zhang, Z. Du, G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115, 32–39 (2013)CrossRef
386.
go back to reference C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Trans. 41, 4027–4035 (2012)CrossRef C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Trans. 41, 4027–4035 (2012)CrossRef
387.
go back to reference M. Ko, A. Aykanat, M.K. Smith, K.A. Mirica, Drawing sensors with ball-milled blends of metal-organic frameworks and graphite. Sensors 17, 2192 (2017)., 17 ppCrossRef M. Ko, A. Aykanat, M.K. Smith, K.A. Mirica, Drawing sensors with ball-milled blends of metal-organic frameworks and graphite. Sensors 17, 2192 (2017)., 17 ppCrossRef
388.
go back to reference T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: Exploring the new concept of adsorbents and catalysts. Adsorption 17(1), 5–16 (2011)CrossRef T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: Exploring the new concept of adsorbents and catalysts. Adsorption 17(1), 5–16 (2011)CrossRef
389.
go back to reference C. Petit, T.J. Bandosz, MOF–graphite oxide nanocomposites: Surface characterization and evaluation as adsorbents of ammonia. J. Mater. Chem. 19, 6521–6528 (2009)CrossRef C. Petit, T.J. Bandosz, MOF–graphite oxide nanocomposites: Surface characterization and evaluation as adsorbents of ammonia. J. Mater. Chem. 19, 6521–6528 (2009)CrossRef
390.
go back to reference M. Chen, Y. Ding, Y. Liu, et al., Adsorptive desulfurization of thiophene from the model fuels onto graphite oxide/metal-organic framework composites. Pet. Sci. Technol. 36(2), 141–147 (2018)CrossRef M. Chen, Y. Ding, Y. Liu, et al., Adsorptive desulfurization of thiophene from the model fuels onto graphite oxide/metal-organic framework composites. Pet. Sci. Technol. 36(2), 141–147 (2018)CrossRef
391.
go back to reference I. Ahmed, N. Abedin Khan, S. Hwa Jhung, Graphite oxide/metal–organic framework (MIL-101): Remarkable performance in the adsorptive denitrogenation of model fuels. Inorg. Chem. 52(24), 14155–14161 (2013)CrossRef I. Ahmed, N. Abedin Khan, S. Hwa Jhung, Graphite oxide/metal–organic framework (MIL-101): Remarkable performance in the adsorptive denitrogenation of model fuels. Inorg. Chem. 52(24), 14155–14161 (2013)CrossRef
392.
go back to reference N. Lin, S. Stepanow, F. Vidal, et al., Surface-assisted coordination chemistry and self-assembly. Dalton Trans., 2794–2800 (2006) N. Lin, S. Stepanow, F. Vidal, et al., Surface-assisted coordination chemistry and self-assembly. Dalton Trans., 2794–2800 (2006)
393.
go back to reference T. Szabó, T. Szabó-Plánka, D. Jónás, N. Veronika Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)CrossRef T. Szabó, T. Szabó-Plánka, D. Jónás, N. Veronika Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)CrossRef
394.
go back to reference D. Kunzel, T. Markert, A. Groß, D.M. Benoit, Bis(terpyridine)-based surface template structures on graphite: A force field and DFT study. Phys. Chem. Chem. Phys. 11, 8867–8878 (2009)CrossRef D. Kunzel, T. Markert, A. Groß, D.M. Benoit, Bis(terpyridine)-based surface template structures on graphite: A force field and DFT study. Phys. Chem. Chem. Phys. 11, 8867–8878 (2009)CrossRef
395.
go back to reference J. Otsuki, T. Tokimoto, Y. Noda, et al., Ordered arrays of organometallic iridium complexes with long alkyl chains on graphite. Chemistry 13(8), 2311–2319 (2007)CrossRef J. Otsuki, T. Tokimoto, Y. Noda, et al., Ordered arrays of organometallic iridium complexes with long alkyl chains on graphite. Chemistry 13(8), 2311–2319 (2007)CrossRef
396.
go back to reference J. Otsuki, S. Kawaguchi, T. Yamakawa, M. Asakawa, K. Miyake, Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006)CrossRef J. Otsuki, S. Kawaguchi, T. Yamakawa, M. Asakawa, K. Miyake, Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006)CrossRef
397.
go back to reference Y. Li, L. Cheng, C. Liu et al., On-surface observation of the formation of organometallic complex in a supramolecular network. Sci. Rep. 5, Article number: 10972 (2015) Y. Li, L. Cheng, C. Liu et al., On-surface observation of the formation of organometallic complex in a supramolecular network. Sci. Rep. 5, Article number: 10972 (2015)
398.
go back to reference T.G. Gopakumar, M. Lackinger, M. Hackert, F. Müller, M. Hietschold, Adsorption of palladium phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 108(23), 7839–7843 (2004)CrossRef T.G. Gopakumar, M. Lackinger, M. Hackert, F. Müller, M. Hietschold, Adsorption of palladium phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 108(23), 7839–7843 (2004)CrossRef
399.
go back to reference A.-Z. Liu, S.-B. Lei, Structure dependent packing behavior of phthalocyanine on the surface of graphite. Surf. Interface Anal. 39, 33–38 (2007)CrossRef A.-Z. Liu, S.-B. Lei, Structure dependent packing behavior of phthalocyanine on the surface of graphite. Surf. Interface Anal. 39, 33–38 (2007)CrossRef
400.
go back to reference Y. Zhao, Y.-H. Kim, L.J. Simpson, et al., Opening space for H2 storage: Cointercalation of graphite with lithium and small organic molecules. Phys. Rev. B 78, 144102 (2008)CrossRef Y. Zhao, Y.-H. Kim, L.J. Simpson, et al., Opening space for H2 storage: Cointercalation of graphite with lithium and small organic molecules. Phys. Rev. B 78, 144102 (2008)CrossRef
401.
go back to reference X. Tian, S. Sarkar, M.L. Moser, et al., Effect of group 6 transition metal coordination on the conductivity of graphite nanoplatelets. Mater. Lett. 80, 171–174 (2012)CrossRef X. Tian, S. Sarkar, M.L. Moser, et al., Effect of group 6 transition metal coordination on the conductivity of graphite nanoplatelets. Mater. Lett. 80, 171–174 (2012)CrossRef
402.
go back to reference P. Qian, H. Nanjo, N. Sanada, T. Yokoyama, T.M. Suzuki, Self-assembly of alkyl substituted Schiff base and Its Cu(II) complex observed on solution–graphite interface by scanning tunneling microscopy. Chem. Lett. 29, 1118–1119 (2000)CrossRef P. Qian, H. Nanjo, N. Sanada, T. Yokoyama, T.M. Suzuki, Self-assembly of alkyl substituted Schiff base and Its Cu(II) complex observed on solution–graphite interface by scanning tunneling microscopy. Chem. Lett. 29, 1118–1119 (2000)CrossRef
403.
go back to reference W. Li, Z. Wang, X. Leng et al., Organometallic nanostructures of 1,4-dibromo-2,5-diiodobenzene by metal ions construction on HOPG surface. Surf. Rev. Lett. 23, 1650020, 8 pp (2016)CrossRef W. Li, Z. Wang, X. Leng et al., Organometallic nanostructures of 1,4-dibromo-2,5-diiodobenzene by metal ions construction on HOPG surface. Surf. Rev. Lett. 23, 1650020, 8 pp (2016)CrossRef
Metadata
Title
Coordination/Organometallic Compounds and Composites of Carbon Allotropes
Authors
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_7

Premium Partners