Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2019

06-09-2019

Correlation between Antimicrobial Activity and Bioactivity of Na-Mica and Na-Mica/Fluorapatite Glass and Glass-Ceramics and Their Corrosion Protection of Titanium in Simulated Body Fluid

Authors: A. M. Fayad, A. M. Fathi, A. A. El-Beih, M. A. Taha, S. A. M. Abdel-Hameed

Published in: Journal of Materials Engineering and Performance | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The improvement in bioactivity of titanium (Ti) surface was achieved via coating it with Na-mica and Na-mica/fluorapatite glass and glass-ceramic using the low-cost electrophoretic deposition technique. Two compositions from pure Na-mica (M) and 80 Na-mica/20 fluorapatite glasses (MF) were prepared in the system SiO2-Al2O3-MgO-MgF2-Na2O-B2O3 using melting–quenching technique. Characterization of the as-prepared glasses and their counterpart glass-ceramics was studied using differential thermal analysis (DTA), x-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform-IR (FTIR) spectroscopy techniques. The bioactivity behavior was proved by studying the XRD, FTIR and SEM after immersing both glass and glass-ceramic samples in simulated body fluid (SBF). Both M and MF glasses and glass-ceramics showed high microhardness measurements and good antibacterial behavior. In vitro biodegradation was studied by using electrochemical corrosion behavior of the prepared glass- and glass-ceramic-coated Ti in SBF. The prepared coated Ti showed good corrosion resistance in SBF at 37 °C using potentiodynamic polarization technique, and the impedance data fitting explained the structure of the coating and the adsorption of SBF ions on the Ti surface. The MFGC provides the best corrosion-resistant coating, especially after sintering it.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E.D. Zanotto, A Bright Future for Glass-Ceramic, Am. Ceram. Soc. Bull., 2010, 89(8), p 19 E.D. Zanotto, A Bright Future for Glass-Ceramic, Am. Ceram. Soc. Bull., 2010, 89(8), p 19
2.
go back to reference W. Höland, Biocompatible and Bioactive Glass-Ceramics, State of the Art and New Directions, J. Non-Cryst. Solids, 1997, 219, p 192–197CrossRef W. Höland, Biocompatible and Bioactive Glass-Ceramics, State of the Art and New Directions, J. Non-Cryst. Solids, 1997, 219, p 192–197CrossRef
3.
go back to reference M.S. Dahiya, V.K. Tomer, and S. Duhan, Bioactive Glass/Glass Ceramics for Dental Applications, Applications of Nanocomposite Materials in Dentistry, Elsevier, Amsterdam, 2018, p 1–26 M.S. Dahiya, V.K. Tomer, and S. Duhan, Bioactive Glass/Glass Ceramics for Dental Applications, Applications of Nanocomposite Materials in Dentistry, Elsevier, Amsterdam, 2018, p 1–26
4.
go back to reference D. Grossman, Tetrasilicic Mica Glass-Ceramic Article, US Patent No 3839055, 1974 D. Grossman, Tetrasilicic Mica Glass-Ceramic Article, US Patent No 3839055, 1974
5.
go back to reference G. Beall, M. Montierth, and G. Smith, Machinable Glass-Ceramics, Microtecnic, 1972, 42, p 173 G. Beall, M. Montierth, and G. Smith, Machinable Glass-Ceramics, Microtecnic, 1972, 42, p 173
6.
go back to reference T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, and S. Higashi, Apatite- and Wollastonite-Containg Glass-Ceramics for Prosthetic Application, Bull. Inst. Chem. Res. Kyoto Univ., 1982, 60, p 260–268 T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, and S. Higashi, Apatite- and Wollastonite-Containg Glass-Ceramics for Prosthetic Application, Bull. Inst. Chem. Res. Kyoto Univ., 1982, 60, p 260–268
7.
go back to reference R. Hill and D. Wood, Apatite Mullite Glass-Ceramics, J. Mater. Sci. Mater. Med., 1995, 6(6), p 311–318CrossRef R. Hill and D. Wood, Apatite Mullite Glass-Ceramics, J. Mater. Sci. Mater. Med., 1995, 6(6), p 311–318CrossRef
8.
go back to reference A. Clifford and R. Hill, Apatite-Mullite Glass-Ceramics, J. Non-Cryst. Solids, 1996, 196(1–3), p 346–351CrossRef A. Clifford and R. Hill, Apatite-Mullite Glass-Ceramics, J. Non-Cryst. Solids, 1996, 196(1–3), p 346–351CrossRef
9.
go back to reference D.U. Tulyaganov, S. Agathopoulos, H.R. Fernandes, J.M. Ventura, and J.M.F. Ferreira, Preparation and Crystallization of Glasses in the System Tetrasilicic Mica-Uorapatite-Diopside, J. Eur. Ceram. Soc., 2004, 24, p 3521–3528CrossRef D.U. Tulyaganov, S. Agathopoulos, H.R. Fernandes, J.M. Ventura, and J.M.F. Ferreira, Preparation and Crystallization of Glasses in the System Tetrasilicic Mica-Uorapatite-Diopside, J. Eur. Ceram. Soc., 2004, 24, p 3521–3528CrossRef
10.
go back to reference P. Ducheyne, K.E. Healy, D.W. Grainger, D.W. Hutmacher, and C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier, Oxford, 2011 P. Ducheyne, K.E. Healy, D.W. Grainger, D.W. Hutmacher, and C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier, Oxford, 2011
11.
go back to reference T. Kokubo, Bioactive Glass-Ceramics Properties and Application, Biomaterials, 1991, 12, p 155–163CrossRef T. Kokubo, Bioactive Glass-Ceramics Properties and Application, Biomaterials, 1991, 12, p 155–163CrossRef
12.
go back to reference T. Kasuga, M. Nogami, and M. Niinomi, Preparation of Calcium Phosphate Glass-Ceramics and Their Coating on Titanium Alloys, Key Eng. Mater., 2001, 192–195, p 223–226 T. Kasuga, M. Nogami, and M. Niinomi, Preparation of Calcium Phosphate Glass-Ceramics and Their Coating on Titanium Alloys, Key Eng. Mater., 2001, 192–195, p 223–226
13.
go back to reference R. Bowen, Adhesive Bonding of Various Materials to Hard Tooth Tissues, J. Dent. Res., 1965, 44(5), p 906–911CrossRef R. Bowen, Adhesive Bonding of Various Materials to Hard Tooth Tissues, J. Dent. Res., 1965, 44(5), p 906–911CrossRef
14.
go back to reference M. Amirnejad, A. Afshar, and S. Salehi, The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD), J. Mater. Eng. Perform, 2018, 27, p 2338–2344CrossRef M. Amirnejad, A. Afshar, and S. Salehi, The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD), J. Mater. Eng. Perform, 2018, 27, p 2338–2344CrossRef
15.
go back to reference D. Haverty, S. Tofail, K. Stanton, and J. McMonagle, Structure and Stability of Hydroxyapatite: Density Functional Calculation and Rietveld Analysis, Phys. Rev. B, 2005, 71(9), p 94–103CrossRef D. Haverty, S. Tofail, K. Stanton, and J. McMonagle, Structure and Stability of Hydroxyapatite: Density Functional Calculation and Rietveld Analysis, Phys. Rev. B, 2005, 71(9), p 94–103CrossRef
16.
go back to reference H. Kim, B. Yoon, Y. Koh, and H. Kim, Processing and Performance of Hydroxyapatite/Fluorapatite Double Layer Coating on Zirconia by the Powder Slurry Method, J. Am. Ceram. Soc., 2006, 89(8), p 2466–2472CrossRef H. Kim, B. Yoon, Y. Koh, and H. Kim, Processing and Performance of Hydroxyapatite/Fluorapatite Double Layer Coating on Zirconia by the Powder Slurry Method, J. Am. Ceram. Soc., 2006, 89(8), p 2466–2472CrossRef
17.
go back to reference T. Kasuga, E. Ueno, and A. Obata, Preparation of Apatite-Containing Calcium Phosphate Glass-Ceramics, Key Eng. Mater., 2007, 330–332, p 157–160CrossRef T. Kasuga, E. Ueno, and A. Obata, Preparation of Apatite-Containing Calcium Phosphate Glass-Ceramics, Key Eng. Mater., 2007, 330–332, p 157–160CrossRef
18.
go back to reference S.K. Yen and C.M. Lin, Cathodic Reactions of Electrolytic Hydroxyapatite Coating on Pure Titanium, Mater. Chem. Phys., 2002, 77, p 70–76CrossRef S.K. Yen and C.M. Lin, Cathodic Reactions of Electrolytic Hydroxyapatite Coating on Pure Titanium, Mater. Chem. Phys., 2002, 77, p 70–76CrossRef
19.
go back to reference J. Gomez-Vega, E. Saiz, and A. Tomsia, Glass-Based Coatings for Titanium Implant Alloys, J. Biomed. Mater. Res., 1999, 46(4), p 549–559CrossRef J. Gomez-Vega, E. Saiz, and A. Tomsia, Glass-Based Coatings for Titanium Implant Alloys, J. Biomed. Mater. Res., 1999, 46(4), p 549–559CrossRef
20.
go back to reference D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205–3213CrossRef D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205–3213CrossRef
21.
go back to reference X. Zhao, L. Yang, Y. Zuo, and J. Xiong, Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid, Chin. J. Chem. Eng., 2009, 17(4), p 667–671CrossRef X. Zhao, L. Yang, Y. Zuo, and J. Xiong, Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid, Chin. J. Chem. Eng., 2009, 17(4), p 667–671CrossRef
22.
go back to reference A.M. Fathi, H.K. Abd El-Hamid, and M.M. Radwan, Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate, Int. J. Electrochem. Sci., 2016, 11, p 3164–3178CrossRef A.M. Fathi, H.K. Abd El-Hamid, and M.M. Radwan, Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate, Int. J. Electrochem. Sci., 2016, 11, p 3164–3178CrossRef
23.
go back to reference K. Stanton and J. Vanhumbeeck, Bioactive Apatite-Mullite Glass-Ceramic Coatings on Titanium Substrates, Adv. Sci. Technol., 2006, 45, p 1275–1280CrossRef K. Stanton and J. Vanhumbeeck, Bioactive Apatite-Mullite Glass-Ceramic Coatings on Titanium Substrates, Adv. Sci. Technol., 2006, 45, p 1275–1280CrossRef
24.
go back to reference M. Pourmand and N. Taghavinia, TiO2 Nanostructured Films on Mica Using Liquid Phase Deposition, Mater. Chem. Phys., 2008, 107, p 449–455CrossRef M. Pourmand and N. Taghavinia, TiO2 Nanostructured Films on Mica Using Liquid Phase Deposition, Mater. Chem. Phys., 2008, 107, p 449–455CrossRef
25.
go back to reference K.P. O’Flynn and K.T. Stanton, Laser Sintering and Crystallization of a Bioactive Glass-Ceramic, J. Non-Cryst. Solids, 2013, 360, p 49–56CrossRef K.P. O’Flynn and K.T. Stanton, Laser Sintering and Crystallization of a Bioactive Glass-Ceramic, J. Non-Cryst. Solids, 2013, 360, p 49–56CrossRef
26.
go back to reference S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, and A. Tomsia, Bioactive Glass Coatings for Orthopedic Metallic Implants, J. Eur. Ceram. Soc., 2003, 23(15), p 2921–2930CrossRef S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, and A. Tomsia, Bioactive Glass Coatings for Orthopedic Metallic Implants, J. Eur. Ceram. Soc., 2003, 23(15), p 2921–2930CrossRef
27.
go back to reference J. Gomez-Vega, E. Saiz, A. Tomsia, G. Marshall, and S. Marshall, Bioactive Glass Coatings with Hydroxyapatite and Bioglass Particles on Ti-Based Implants. 1. Processing, Biomaterials, 2000, 21(2), p 105–111CrossRef J. Gomez-Vega, E. Saiz, A. Tomsia, G. Marshall, and S. Marshall, Bioactive Glass Coatings with Hydroxyapatite and Bioglass Particles on Ti-Based Implants. 1. Processing, Biomaterials, 2000, 21(2), p 105–111CrossRef
28.
go back to reference M. Montazerian and E.D. Zanotto, Bioactive and Inert Dental Glass-Ceramics, J. Biomed. Mater. Res. A, 2017, 105(2), p 619–639CrossRef M. Montazerian and E.D. Zanotto, Bioactive and Inert Dental Glass-Ceramics, J. Biomed. Mater. Res. A, 2017, 105(2), p 619–639CrossRef
29.
go back to reference L. Hallmann, P. Ulmer, and M. Kern, Effect of Microstructure on the Mechanical Properties of Lithium Disilicate Glass-Ceramic, J. Mech. Behav. Biomed. Mater., 2018, 82, p 355–370CrossRef L. Hallmann, P. Ulmer, and M. Kern, Effect of Microstructure on the Mechanical Properties of Lithium Disilicate Glass-Ceramic, J. Mech. Behav. Biomed. Mater., 2018, 82, p 355–370CrossRef
30.
go back to reference T. Uno, T. Kasuga, and S. Nakayama, High Strength Mica-Containing Glass-Ceramics, J. Am. Ceram. Soc., 1991, 74, p 3139–3141CrossRef T. Uno, T. Kasuga, and S. Nakayama, High Strength Mica-Containing Glass-Ceramics, J. Am. Ceram. Soc., 1991, 74, p 3139–3141CrossRef
31.
go back to reference Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota, and A. Fujishima, Self-sterilizing and Self-cleaning of Silicone Catheters Coated with TiO2 Photocatalyst Thin Films, J. Biomed. Mater. Res., 2001, 58, p 97–101CrossRef Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota, and A. Fujishima, Self-sterilizing and Self-cleaning of Silicone Catheters Coated with TiO2 Photocatalyst Thin Films, J. Biomed. Mater. Res., 2001, 58, p 97–101CrossRef
32.
go back to reference M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, and J.H. Evans, Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual Coating Approach, J. Sol Gel Sci. Technol., 2001, 21, p 39–48CrossRef M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, and J.H. Evans, Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual Coating Approach, J. Sol Gel Sci. Technol., 2001, 21, p 39–48CrossRef
33.
go back to reference A.W.A. El-Shennawi, M.M. Morsi, G.A. Khater, and S.A.M. Abdel-Hameed, Thermodynamic Investigation of Crystallization Behavior of Pyroxenic Basalt-Based Glasses, J. Therm. Anal., 1998, 50(2), p 206 A.W.A. El-Shennawi, M.M. Morsi, G.A. Khater, and S.A.M. Abdel-Hameed, Thermodynamic Investigation of Crystallization Behavior of Pyroxenic Basalt-Based Glasses, J. Therm. Anal., 1998, 50(2), p 206
34.
go back to reference A.W.A. El-Shennawi, M.M. Morsi, and S.A.M. Abdel-Hameed, Effect of Fluoride Nucleating Catalysts on Crystallization of Cordierite from Modified Basalt-Based Glasses, J. Eur. Ceram. Soc., 2007, 27, p 1829–1835CrossRef A.W.A. El-Shennawi, M.M. Morsi, and S.A.M. Abdel-Hameed, Effect of Fluoride Nucleating Catalysts on Crystallization of Cordierite from Modified Basalt-Based Glasses, J. Eur. Ceram. Soc., 2007, 27, p 1829–1835CrossRef
35.
go back to reference D.B. Dingwell, C.M. Scarfe, and D.J. Cronin, The Effect of Fluorine on Viscosities in the System Na2O-Al2O3-SiO2: Implications for Phonolites, Trachytes and Rhyolites, Am. Mineral., 1985, 70, p 80–87 D.B. Dingwell, C.M. Scarfe, and D.J. Cronin, The Effect of Fluorine on Viscosities in the System Na2O-Al2O3-SiO2: Implications for Phonolites, Trachytes and Rhyolites, Am. Mineral., 1985, 70, p 80–87
36.
go back to reference J.H. Simmons, D.R. Uhlmann, and E.H. Beall, Nucleation and Crystallization in Glasses, American Ceramic Society, Columbus, 1982 J.H. Simmons, D.R. Uhlmann, and E.H. Beall, Nucleation and Crystallization in Glasses, American Ceramic Society, Columbus, 1982
37.
go back to reference L. Yong, Q. Xiang, Y. Tan, and X. Sheng, Nucleation and Growth of Needle-like Fluorapatite Crystals in Bioactive Glass-Ceramics, J. Non-Cryst. Solids, 2008, 354, p 938–944CrossRef L. Yong, Q. Xiang, Y. Tan, and X. Sheng, Nucleation and Growth of Needle-like Fluorapatite Crystals in Bioactive Glass-Ceramics, J. Non-Cryst. Solids, 2008, 354, p 938–944CrossRef
38.
go back to reference S. Taruta, K. Mukoyama, S.S. Suzuki, K. Kitajima, and N. Takusagawa, Crystallization Process and Some Properties of Calcium Mica-Apatite Glass-Ceramics, J. Non-Cryst. Solids, 2001, 296, p 201CrossRef S. Taruta, K. Mukoyama, S.S. Suzuki, K. Kitajima, and N. Takusagawa, Crystallization Process and Some Properties of Calcium Mica-Apatite Glass-Ceramics, J. Non-Cryst. Solids, 2001, 296, p 201CrossRef
39.
go back to reference X.F. Chen, L.L. Hench, D. Greenspan, J.P. Zhong, and X.K. Zhang, investigation on Phase Separation, Nucleation and Crystallization in Bioactive Glass Ceramics Containing Fluorophlogopite and Fluorapatite, Ceram. Int., 1998, 24, p 401CrossRef X.F. Chen, L.L. Hench, D. Greenspan, J.P. Zhong, and X.K. Zhang, investigation on Phase Separation, Nucleation and Crystallization in Bioactive Glass Ceramics Containing Fluorophlogopite and Fluorapatite, Ceram. Int., 1998, 24, p 401CrossRef
40.
go back to reference P. Tarte, Identification of Li-O Bands in the Infrared Spectra of Simple Lithium Compounds Containing LiO4 Tetrahedra, Spectrochim. Acta, 1964, 20, p 238–240571CrossRef P. Tarte, Identification of Li-O Bands in the Infrared Spectra of Simple Lithium Compounds Containing LiO4 Tetrahedra, Spectrochim. Acta, 1964, 20, p 238–240571CrossRef
41.
go back to reference R. Condrate, Introduction to Glass Science, Plenum Press, New York, 1972, p 101CrossRef R. Condrate, Introduction to Glass Science, Plenum Press, New York, 1972, p 101CrossRef
42.
go back to reference W. Höland, V. Rheinberger, and M. Frank, Mechanism of Nucleation and Controlled Crystallization of Needle like Apatite in Glass Ceramics of the SiO2-Al2O3-K2O-CaO-P2O5 Systems, J. Non-Cryst. Solids, 1999, 253, p 170CrossRef W. Höland, V. Rheinberger, and M. Frank, Mechanism of Nucleation and Controlled Crystallization of Needle like Apatite in Glass Ceramics of the SiO2-Al2O3-K2O-CaO-P2O5 Systems, J. Non-Cryst. Solids, 1999, 253, p 170CrossRef
43.
go back to reference D.P. Mukherjee, A.R. Molla, and S.K. Das, The Influence of MgF2 Content on the Characteristic Improvement of Machinable Glass Ceramics, J. Non-Cryst. Solids, 2016, 433, p 51–59CrossRef D.P. Mukherjee, A.R. Molla, and S.K. Das, The Influence of MgF2 Content on the Characteristic Improvement of Machinable Glass Ceramics, J. Non-Cryst. Solids, 2016, 433, p 51–59CrossRef
44.
go back to reference S.G. Motke, S.P. Yawale, and S.S. Yawale, Infrared Spectra of Zinc Doped Lead Borate Glasses, Bull. Mater. Sci., 2002, 25, p 75–78CrossRef S.G. Motke, S.P. Yawale, and S.S. Yawale, Infrared Spectra of Zinc Doped Lead Borate Glasses, Bull. Mater. Sci., 2002, 25, p 75–78CrossRef
45.
go back to reference F.H. ElBatal, M.A. Ouis, and H.A. ElBatal, Comparative Studies on the Bioactivity of Some Borate Glasses and Glass-Ceramics from the Two Systems: Na2, O-CaO-B2O3 and NaF-CaF2-B2O3, Ceram. Int., 2016, 42, p 8247–8256CrossRef F.H. ElBatal, M.A. Ouis, and H.A. ElBatal, Comparative Studies on the Bioactivity of Some Borate Glasses and Glass-Ceramics from the Two Systems: Na2, O-CaO-B2O3 and NaF-CaF2-B2O3, Ceram. Int., 2016, 42, p 8247–8256CrossRef
46.
go back to reference A.M. Abdelghany, F.H. ElBatal, and H.A. ElBatal, Zinc Containing Borate Glasses and Glass-Ceramics: Search for Biomedical Applications, Process. Appl. Ceram., 2014, 8(4), p 185–193CrossRef A.M. Abdelghany, F.H. ElBatal, and H.A. ElBatal, Zinc Containing Borate Glasses and Glass-Ceramics: Search for Biomedical Applications, Process. Appl. Ceram., 2014, 8(4), p 185–193CrossRef
47.
go back to reference M.A. Marzouk and H.A. ElBatal, In Vitro Bioactivity of Soda Lime Borate Glasses with Substituted SrO in Sodium Phosphate Solution, Process. Appl. Ceram., 2014, 8(3), p 167–177CrossRef M.A. Marzouk and H.A. ElBatal, In Vitro Bioactivity of Soda Lime Borate Glasses with Substituted SrO in Sodium Phosphate Solution, Process. Appl. Ceram., 2014, 8(3), p 167–177CrossRef
48.
go back to reference S.P. Singh, K. Pal, A. Tarafder, M. Dsa, K. Annapurna, and B. Karmakar, Effects of SiO2 and TiO2 Fillers on Thermal and Dielectric Properties of Eco-friendly Bismuth Glass Microcomposites of Plasma Display Panels, Bull. Mater. Sci., 2010, 33, p 33–41CrossRef S.P. Singh, K. Pal, A. Tarafder, M. Dsa, K. Annapurna, and B. Karmakar, Effects of SiO2 and TiO2 Fillers on Thermal and Dielectric Properties of Eco-friendly Bismuth Glass Microcomposites of Plasma Display Panels, Bull. Mater. Sci., 2010, 33, p 33–41CrossRef
49.
go back to reference T. Furukawa and W.B. White, Raman Spectroscopy of Heat-Treated B2O3-SiO2 Glasses, J. Am. Ceram. Soc., 1981, 64, p 443–447CrossRef T. Furukawa and W.B. White, Raman Spectroscopy of Heat-Treated B2O3-SiO2 Glasses, J. Am. Ceram. Soc., 1981, 64, p 443–447CrossRef
50.
go back to reference N.A. Shafi and M.M. Morsi, Optical Absorption and Infrared Studies of Some Silicate Glasses Containing Titanium, J. Mater. Sci., 1997, 32, p 5185–5189CrossRef N.A. Shafi and M.M. Morsi, Optical Absorption and Infrared Studies of Some Silicate Glasses Containing Titanium, J. Mater. Sci., 1997, 32, p 5185–5189CrossRef
51.
go back to reference E.M. Khalil and M. Aouf, Effect of Heat Treatment on the Infrared Absorption Spectra of Strontium-Sodium-Borosilicate Glass, Indian J. Eng. Mater. Sci., 1997, 4, p 155–162 E.M. Khalil and M. Aouf, Effect of Heat Treatment on the Infrared Absorption Spectra of Strontium-Sodium-Borosilicate Glass, Indian J. Eng. Mater. Sci., 1997, 4, p 155–162
52.
go back to reference T. Suzuki, Y. Arai, and Y. Ohishi, Crystallization Processes of Li2O-Ga2O3-SiO2-NiO System Glasses, J. Non-Cryst. Solids, 2007, 353, p 36–43CrossRef T. Suzuki, Y. Arai, and Y. Ohishi, Crystallization Processes of Li2O-Ga2O3-SiO2-NiO System Glasses, J. Non-Cryst. Solids, 2007, 353, p 36–43CrossRef
53.
go back to reference I. Konidakis, C.-P.E. Varsamis, E.I. Kamitsos, D. Möncke, and D. Ehrt, Structure and Properties of Mixed Strontium-Manganese Metaphosphate Glasses, J. Phys. Chem. C, 2010, 114, p 9125–9138CrossRef I. Konidakis, C.-P.E. Varsamis, E.I. Kamitsos, D. Möncke, and D. Ehrt, Structure and Properties of Mixed Strontium-Manganese Metaphosphate Glasses, J. Phys. Chem. C, 2010, 114, p 9125–9138CrossRef
54.
go back to reference C. Dayanand, G. Bhikshamaiah, V. Jaya Tyagaraju, M. Salagram, and A.S.R. Krishana Murthy, Structural Investigations of Phosphate Glasses: A Detailed Infrared Study of the x(PbO)-(1 − x) P2O5 Vitreous System, J. Mater. Sci., 1996, 31, p 1945CrossRef C. Dayanand, G. Bhikshamaiah, V. Jaya Tyagaraju, M. Salagram, and A.S.R. Krishana Murthy, Structural Investigations of Phosphate Glasses: A Detailed Infrared Study of the x(PbO)-(1 − x) P2O5 Vitreous System, J. Mater. Sci., 1996, 31, p 1945CrossRef
55.
go back to reference M. Rafiqul Ahsan, M. Alfaz Uddin, and M. Golam Mortuza, Infrared Study of the Effect of P2O5 in the Structure of Lead Silicate Glasses, Indian J. Pure Appl. Phys., 2005, 43, p 89–99 M. Rafiqul Ahsan, M. Alfaz Uddin, and M. Golam Mortuza, Infrared Study of the Effect of P2O5 in the Structure of Lead Silicate Glasses, Indian J. Pure Appl. Phys., 2005, 43, p 89–99
56.
go back to reference H.A. ElBatal, A.A. ElKheshen, N.A. Ghoneim, M.A. Marzouk, F.H. ElBatal, A.M. Fayad, A.M. Abdelghany, and A.A. El-Beih, In Vitro Bioactivity Behavior of Some Borophosphate Glasses Containing Dopant of ZnO, CuO or SrO Together with their Glass-Ceramic Derivatives and Their Antimicrobial Activity, Silicon, 2019, 11, p 197–208CrossRef H.A. ElBatal, A.A. ElKheshen, N.A. Ghoneim, M.A. Marzouk, F.H. ElBatal, A.M. Fayad, A.M. Abdelghany, and A.A. El-Beih, In Vitro Bioactivity Behavior of Some Borophosphate Glasses Containing Dopant of ZnO, CuO or SrO Together with their Glass-Ceramic Derivatives and Their Antimicrobial Activity, Silicon, 2019, 11, p 197–208CrossRef
57.
go back to reference O.P. Filho, G.P. La Torre, and L.L. Hench, Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45S5, J. Biomed. Mater. Res., 1996, 30, p 509–514CrossRef O.P. Filho, G.P. La Torre, and L.L. Hench, Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45S5, J. Biomed. Mater. Res., 1996, 30, p 509–514CrossRef
58.
go back to reference T. Uno, T. Kasuga, S. Nakayama, and A.J. Ikushima, Microstructure of Mica-Based Nanocomposite Glass-Ceramic, J. Am. Ceram. Soc., 1993, 76, p 539–541CrossRef T. Uno, T. Kasuga, S. Nakayama, and A.J. Ikushima, Microstructure of Mica-Based Nanocomposite Glass-Ceramic, J. Am. Ceram. Soc., 1993, 76, p 539–541CrossRef
59.
go back to reference O. Xiang, Y. Liu, X. Sheng, and X. Dan, Preparation of Mica-Based Glass-Ceramics with Needle-like Fluorapatite, J. Dent. Mater., 2007, 23, p 251–258CrossRef O. Xiang, Y. Liu, X. Sheng, and X. Dan, Preparation of Mica-Based Glass-Ceramics with Needle-like Fluorapatite, J. Dent. Mater., 2007, 23, p 251–258CrossRef
60.
go back to reference J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, and P.V. Hatton, Multifunctional Bioactive Glass and Glass-Ceramic Biomaterials with Antibacterial Properties for Repair and Regeneration of Bone Tissue, Acta Biomater., 2017, 59, p 2–11CrossRef J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, and P.V. Hatton, Multifunctional Bioactive Glass and Glass-Ceramic Biomaterials with Antibacterial Properties for Repair and Regeneration of Bone Tissue, Acta Biomater., 2017, 59, p 2–11CrossRef
61.
go back to reference W.A. Badawy, K.M. Ismail, and A.M. Fathi, Corrosion Control of Cu-Ni Alloys in Neutral Chloride Solutions by Amino Acids, Electrochim. Acta, 2006, 51, p 4182–4189CrossRef W.A. Badawy, K.M. Ismail, and A.M. Fathi, Corrosion Control of Cu-Ni Alloys in Neutral Chloride Solutions by Amino Acids, Electrochim. Acta, 2006, 51, p 4182–4189CrossRef
62.
go back to reference D.S. Brauera, N. Karpukhina, M.D. O’Donnell, R.V. Law, and R.G. Hill, Fluoride-Containing Bioactive Glasses: Effect of Glass Design and Structure on Degradation, pH and Apatite Formation in Simulated Body Fluid, Acta Biomater., 2010, 6, p 3275–3282CrossRef D.S. Brauera, N. Karpukhina, M.D. O’Donnell, R.V. Law, and R.G. Hill, Fluoride-Containing Bioactive Glasses: Effect of Glass Design and Structure on Degradation, pH and Apatite Formation in Simulated Body Fluid, Acta Biomater., 2010, 6, p 3275–3282CrossRef
63.
go back to reference A. Balamurugan, G. Balossier, J. Michel, and J.M.F. Ferreira, Electrochemical and Structural Evaluation of Functionally Graded Bioglass-Apatite Composites Electrophoretically Deposited onto Ti6Al4V Alloy, Electrochim. Acta, 2009, 54, p 1192CrossRef A. Balamurugan, G. Balossier, J. Michel, and J.M.F. Ferreira, Electrochemical and Structural Evaluation of Functionally Graded Bioglass-Apatite Composites Electrophoretically Deposited onto Ti6Al4V Alloy, Electrochim. Acta, 2009, 54, p 1192CrossRef
64.
go back to reference Z.M. Al-Rashidy, M.M. Farag, N.A. Abdel Ghany, A.M. Ibrahim, and Wafa I. Abdel-Fattah, Aqueous Electrophoretic Deposition and Corrosion Protection of Borate Glass Coatings on 316 L Stainless Steel for Hard Tissue Fixation, Surf. Interfaces, 2017, 7, p 125–133CrossRef Z.M. Al-Rashidy, M.M. Farag, N.A. Abdel Ghany, A.M. Ibrahim, and Wafa I. Abdel-Fattah, Aqueous Electrophoretic Deposition and Corrosion Protection of Borate Glass Coatings on 316 L Stainless Steel for Hard Tissue Fixation, Surf. Interfaces, 2017, 7, p 125–133CrossRef
65.
go back to reference C.Y. Yang, B.C. Wang, E. Chang, and B.C. Wu, Bond Degradation at the Plasma-Sprayed HA Coating/Ti-6AI-4V Alloy Interface: An In Vitro Study, J. Mater. Sci. Mater. Med., 1995, 6, p 258–265CrossRef C.Y. Yang, B.C. Wang, E. Chang, and B.C. Wu, Bond Degradation at the Plasma-Sprayed HA Coating/Ti-6AI-4V Alloy Interface: An In Vitro Study, J. Mater. Sci. Mater. Med., 1995, 6, p 258–265CrossRef
66.
go back to reference A.R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, Electrophoretic Deposition of Biomaterials, J. R. Soc. Interface, 2010, 7, p S581–S613CrossRef A.R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, Electrophoretic Deposition of Biomaterials, J. R. Soc. Interface, 2010, 7, p S581–S613CrossRef
Metadata
Title
Correlation between Antimicrobial Activity and Bioactivity of Na-Mica and Na-Mica/Fluorapatite Glass and Glass-Ceramics and Their Corrosion Protection of Titanium in Simulated Body Fluid
Authors
A. M. Fayad
A. M. Fathi
A. A. El-Beih
M. A. Taha
S. A. M. Abdel-Hameed
Publication date
06-09-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04296-5

Other articles of this Issue 9/2019

Journal of Materials Engineering and Performance 9/2019 Go to the issue

Premium Partners