Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-11-2019 | Original Article | Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020

Data mining and machine learning approaches for prediction modelling of schistosomiasis disease vectors

Epidemic disease prediction modelling

Journal:
International Journal of Machine Learning and Cybernetics > Issue 6/2020
Authors:
Terence Fusco, Yaxin Bi, Haiying Wang, Fiona Browne
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This research presents viable solutions for prediction modelling of schistosomiasis disease based on vector density. Novel training models proposed in this work aim to address various aspects of interest in the artificial intelligence applications domain. Topics discussed include data imputation, semi-supervised labelling and synthetic instance simulation when using sparse training data. Innovative semi-supervised ensemble learning paradigms are proposed focusing on labelling threshold selection and stringency of classification confidence levels. A regression-correlation combination (RCC) data imputation method is also introduced for handling of partially complete training data. Results presented in this work show data imputation precision improvement over benchmark value replacement using proposed RCC on 70% of test cases. Proposed novel incremental transductive models such as ITSVM have provided interesting findings based on threshold constraints outperforming standard SVM application on 21% of test cases and can be applied with alternative environment-based epidemic disease domains. The proposed incremental transductive ensemble approach model enables the combination of complimentary algorithms to provide labelling for unlabelled vector density instances. Liberal (LTA) and strict training approaches provided varied results with LTA outperforming Stacking ensemble on 29.1% of test cases. Proposed novel synthetic minority over-sampling technique (SMOTE) equilibrium approach has yielded subtle classification performance increases which can be further interrogated to assess classification performance and efficiency relationships with synthetic instance generation.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020 Go to the issue