Skip to main content
Top
Published in: Cellulose 2/2023

28-11-2022 | Original Research

Development of energy efficient nanocellulose production process by enzymatic pretreatment and controlled temperature refining of cotton linters

Authors: Ashok Kumar Bharimalla, S. P. Deshmukh, Sharmila Patil, Vigneshwaran Nadanathangam, Sujata Saxena

Published in: Cellulose | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocellulose (NC) is a new frontier subject of research owing to its unique material properties. The key challenge in producing the NC on commercial scale is high energy requirement in mechanical methods and high use of toxic chemicals in chemical methods. The present study aimed at development of a process protocol for energy-efficient production of NC from cotton linters. Four different production processes involving the chemical and enzyme pretreatments and mechanical processing such as beating, refining, Ultra-High Pressure Homogenization were studied. The cellulase enzyme (1%) pretreatment of cotton linters followed by controlled temperature refining (15 passes at 23 ± 5 °C) was found to be most efficient production process in terms of optimum size and less energy consumption. The NC obtained by this optimized process protocol had fibre diameter of 125 ± 25 nm and the energy consumption of the process was as less as 9.96 kWh/kg NC produced. The process involved 50–66% less energy requirement as compared to the reported average value of 20–30kWh/kg for NC production. NC produced from cotton linters using this optimized process protocol can find the application as a reinforcing agent in Kraft papers and biocomposite films to enhance their mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97(2):725–730CrossRef Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97(2):725–730CrossRef
go back to reference Ankerfors M (2012) Microfibrillated cellulose: Energy-efficient preparation techniques and key properties Licentiate. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden Ankerfors M (2012) Microfibrillated cellulose: Energy-efficient preparation techniques and key properties Licentiate. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden
go back to reference Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng 5(3):2350–2359CrossRef Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng 5(3):2350–2359CrossRef
go back to reference Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2018) Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25(8):4345–4355CrossRef Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2018) Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25(8):4345–4355CrossRef
go back to reference Chen T, Xie Y, Wei Q, Wang XA, Hagman O, Karlsson O, Liu J (2016) Effect of refining on physical properties and paper strength of Pinus massoniana and China fir cellulose fibers. BioResources 11(3):7839–7848CrossRef Chen T, Xie Y, Wei Q, Wang XA, Hagman O, Karlsson O, Liu J (2016) Effect of refining on physical properties and paper strength of Pinus massoniana and China fir cellulose fibers. BioResources 11(3):7839–7848CrossRef
go back to reference Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Bull Stiintific Ser B Chem Mater Sci 73(2):133–152 Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Bull Stiintific Ser B Chem Mater Sci 73(2):133–152
go back to reference Helandet M (2014) The use of membrane filtration to improve the properties of extracted wood components. Ph. D thesis, Stockholm KTH Chemical Science and Engineering, pp 37–39 Helandet M (2014) The use of membrane filtration to improve the properties of extracted wood components. Ph. D thesis, Stockholm KTH Chemical Science and Engineering, pp 37–39
go back to reference Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824CrossRef Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824CrossRef
go back to reference Hideno A, Abe K, Yano H (2014) Preparation using pectinase and characterization of nanofibers from orange peel waste in juice factories. J Food Sci 79:1218–1224CrossRef Hideno A, Abe K, Yano H (2014) Preparation using pectinase and characterization of nanofibers from orange peel waste in juice factories. J Food Sci 79:1218–1224CrossRef
go back to reference Hongrattanavichit I, Aht-Ong D (2020) Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. J Clean Prod 277:123471CrossRef Hongrattanavichit I, Aht-Ong D (2020) Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. J Clean Prod 277:123471CrossRef
go back to reference Hu Z, Musikavanhu B, Li Li J, He Z (2018) ZnCl2 pretreatment of bamboo chips to produce chemi-thermomechanical pulp: saving refining energy and improving pulp properties. BioResources 13(3):5164–5178CrossRef Hu Z, Musikavanhu B, Li Li J, He Z (2018) ZnCl2 pretreatment of bamboo chips to produce chemi-thermomechanical pulp: saving refining energy and improving pulp properties. BioResources 13(3):5164–5178CrossRef
go back to reference Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3(4):1403–1418CrossRef Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3(4):1403–1418CrossRef
go back to reference Jeddi MK, Laitinen O, Liimatainen H (2019) Magnetic superabsorbents based on nanocellulose aerobeads for selective removal of oils and organic solvents. Mater Des 183:108115CrossRef Jeddi MK, Laitinen O, Liimatainen H (2019) Magnetic superabsorbents based on nanocellulose aerobeads for selective removal of oils and organic solvents. Mater Des 183:108115CrossRef
go back to reference Karande VS, Mhaske ST, Bharimalla AK, Hadge GB, Vigneshwaran N (2013) Evaluation of two-stage process (refining and homogenization) for nanofibrillation of cotton fibres. Polym Eng Sci 53(8):1590–1597CrossRef Karande VS, Mhaske ST, Bharimalla AK, Hadge GB, Vigneshwaran N (2013) Evaluation of two-stage process (refining and homogenization) for nanofibrillation of cotton fibres. Polym Eng Sci 53(8):1590–1597CrossRef
go back to reference Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, Gałęski A (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymer and porous nanocomposites. Prog Polym Sci 87:197–227CrossRef Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, Gałęski A (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymer and porous nanocomposites. Prog Polym Sci 87:197–227CrossRef
go back to reference Kargupta W, Seifert R, Martinez M, Olson J, Tanner J, Batchelor W (2021) Sustainable production process of mechanically prepared nanocellulose from hardwood and softwood: a comparative investigation of refining energy consumption at laboratory and pilot scale. Ind Crops Prod 171:113868CrossRef Kargupta W, Seifert R, Martinez M, Olson J, Tanner J, Batchelor W (2021) Sustainable production process of mechanically prepared nanocellulose from hardwood and softwood: a comparative investigation of refining energy consumption at laboratory and pilot scale. Ind Crops Prod 171:113868CrossRef
go back to reference Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro and nano. Carbohydr Polym 101:878–885CrossRef Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro and nano. Carbohydr Polym 101:878–885CrossRef
go back to reference Karomah A (2021) New cellulose nanofiber production facility for biomedical applications. Retrieved from New Cellulose nanofiber production facility (azonano.com) Karomah A (2021) New cellulose nanofiber production facility for biomedical applications. Retrieved from New Cellulose nanofiber production facility (azonano.com)
go back to reference Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfos M, Gray D, Dorris A (2011) Nanocellulose: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfos M, Gray D, Dorris A (2011) Nanocellulose: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
go back to reference Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, Kramer F, KondoT, Lindström T, Nietzsche S (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21(7):720–748CrossRef Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, Kramer F, KondoT, Lindström T, Nietzsche S (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21(7):720–748CrossRef
go back to reference Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6(8):5999–6007. https://doi.org/10.1039/C5RA27246GCrossRef Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP (2016) 3-dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6(8):5999–6007. https://​doi.​org/​10.​1039/​C5RA27246GCrossRef
go back to reference Nechyporchuk O (2015) Cellulose nanofibers for the production of bionanocomposites. Doctoral dissertation, Grenoble Alpes, Instituto superior técnico (Lisbonne) Nechyporchuk O (2015) Cellulose nanofibers for the production of bionanocomposites. Doctoral dissertation, Grenoble Alpes, Instituto superior técnico (Lisbonne)
go back to reference Nyamayaro K, Keyvani P, D’Acierno F, Poisson J, Hudson ZM, Michal CA, Madden JDW, Hatzikiriakos SG, Mehrkhodavandi P (2020) Toward biodegradable electronics: ionic diodes based on a cellulose nanocrystal-agarose hydrogel. ACS Appl Mater Interfaces 12(46):52182–52191CrossRef Nyamayaro K, Keyvani P, D’Acierno F, Poisson J, Hudson ZM, Michal CA, Madden JDW, Hatzikiriakos SG, Mehrkhodavandi P (2020) Toward biodegradable electronics: ionic diodes based on a cellulose nanocrystal-agarose hydrogel. ACS Appl Mater Interfaces 12(46):52182–52191CrossRef
go back to reference Park NM, Choi S, Oh JE, Hwang DY (2019) Facile extraction of cellulose nanocrystals. Carbohydr Polym 223:115114CrossRef Park NM, Choi S, Oh JE, Hwang DY (2019) Facile extraction of cellulose nanocrystals. Carbohydr Polym 223:115114CrossRef
go back to reference Perzon A, Jørgensen B, Ulvskov P (2020) Sustainable production of cellulose nanofiber gels and paper from sugar beet waste using enzymatic pre-treatment. Carbohydr Polym 230:115581CrossRef Perzon A, Jørgensen B, Ulvskov P (2020) Sustainable production of cellulose nanofiber gels and paper from sugar beet waste using enzymatic pre-treatment. Carbohydr Polym 230:115581CrossRef
go back to reference Petroudy SRD, Chabot B, Loranger E, Naebe M, Shojaeiarani J, Gharehkhani S, Ahvazi B, Hu J, Thomas (2021) Recent advances in cellulose nanofibers preparation through energy-efficient approaches: a review. Energies 14(20):6792CrossRef Petroudy SRD, Chabot B, Loranger E, Naebe M, Shojaeiarani J, Gharehkhani S, Ahvazi B, Hu J, Thomas (2021) Recent advances in cellulose nanofibers preparation through energy-efficient approaches: a review. Energies 14(20):6792CrossRef
go back to reference Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234CrossRef Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234CrossRef
go back to reference Ramasamy J, Amanullah M (2020) Nanocellulose for oil and gas field drilling and cementing applications. J Petrol Sci Eng 184:106292CrossRef Ramasamy J, Amanullah M (2020) Nanocellulose for oil and gas field drilling and cementing applications. J Petrol Sci Eng 184:106292CrossRef
go back to reference Rol F, Karakashov B, Nechyporchuk O, Terrien M, Meyer V, Dufresne A, Belgacem MN, Bras J (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5:6524–6531. https://doi.org/10.1021/acssuschemeng7b00630CrossRef Rol F, Karakashov B, Nechyporchuk O, Terrien M, Meyer V, Dufresne A, Belgacem MN, Bras J (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5:6524–6531. https://​doi.​org/​10.​1021/​acssuschemeng7b0​0630CrossRef
go back to reference Segal LGJMA, Creely JJ, Martin JrAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal LGJMA, Creely JJ, Martin JrAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
go back to reference Slęzak A, Kucharzewski M, Jasik-Ślęzak J (2016) The characteristics of medical dressings bacterial cellulose membrane. Available at: http://www dbc wroc pl/Content/2112/202_Slez pdf. Accessed 2022 Slęzak A, Kucharzewski M, Jasik-Ślęzak J (2016) The characteristics of medical dressings bacterial cellulose membrane. Available at: http://​www dbc wroc pl/Content/2112/202_Slez pdf. Accessed 2022
go back to reference Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef
go back to reference Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430CrossRef Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430CrossRef
go back to reference Vigneshwaran N, Karande K, Hadge GB, Mhaske ST, Bharimalla AK (2013) Enzyme/zinc chloride pretreatment of short-shape cotton fibers for energy reduction during nano fibrillation by refining process. In: World cotton research conference on technologies for prosperity abstract no oral, pp. 8959 Vigneshwaran N, Karande K, Hadge GB, Mhaske ST, Bharimalla AK (2013) Enzyme/zinc chloride pretreatment of short-shape cotton fibers for energy reduction during nano fibrillation by refining process. In: World cotton research conference on technologies for prosperity abstract no oral, pp. 8959
go back to reference Vigneshwaran N, Karande V, Hadge GB, Mhaske ST, Bharimalla AK (2011) Enzyme/zinc chloride pretreatment of short- staple cotton fibres for energy reduction during nano-fibrillation by refining process. In: Proceedings of world cotton research conference-5. Excel India Publishers: Mumbai, pp. 471–476 Vigneshwaran N, Karande V, Hadge GB, Mhaske ST, Bharimalla AK (2011) Enzyme/zinc chloride pretreatment of short- staple cotton fibres for energy reduction during nano-fibrillation by refining process. In: Proceedings of world cotton research conference-5. Excel India Publishers: Mumbai, pp. 471–476
go back to reference Vishnu R, Revathi R (2019) Methods of isolation of nanocellulose from wood: a review. J Pharmacogn Phytochem 8(5):2386–2392 Vishnu R, Revathi R (2019) Methods of isolation of nanocellulose from wood: a review. J Pharmacogn Phytochem 8(5):2386–2392
go back to reference Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151CrossRef Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151CrossRef
go back to reference Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643CrossRef Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643CrossRef
go back to reference Yang X, Wang X, Liu H, Zhao Y, Jiang S, Liu L (2017) Impact of dimethyl sulfoxide treatment on morphology and characteristics of nanofibrillated cellulose isolated from corn husks. BioResources 12(1):95–106 Yang X, Wang X, Liu H, Zhao Y, Jiang S, Liu L (2017) Impact of dimethyl sulfoxide treatment on morphology and characteristics of nanofibrillated cellulose isolated from corn husks. BioResources 12(1):95–106
go back to reference Yao Y, Huang X, Zhang B, Zhang Z, Hou D, Zhou Han J, Han G, French AD, Qi Y, Wu Q (2020) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohydr Polym 147:155–164 Yao Y, Huang X, Zhang B, Zhang Z, Hou D, Zhou Han J, Han G, French AD, Qi Y, Wu Q (2020) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohydr Polym 147:155–164
go back to reference Zhou H, St John F, Zhu JY (2019) Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26:543–555CrossRef Zhou H, St John F, Zhu JY (2019) Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26:543–555CrossRef
Metadata
Title
Development of energy efficient nanocellulose production process by enzymatic pretreatment and controlled temperature refining of cotton linters
Authors
Ashok Kumar Bharimalla
S. P. Deshmukh
Sharmila Patil
Vigneshwaran Nadanathangam
Sujata Saxena
Publication date
28-11-2022
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2023
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-04959-y

Other articles of this Issue 2/2023

Cellulose 2/2023 Go to the issue