Skip to main content
Top
Published in: Journal of Electronic Materials 10/2021

08-07-2021 | Original Research Article

Dielectric Properties and Phase Stabilization of PVDF Polymer in (1−x)PVDF/xBCZT Composite Films

Authors: Tarun Garg, Venkateswarlu Annapureddy, K. C. Sekhar, Dae-Yong Jeong, Navneet Dabra, Jasbir S. Hundal

Published in: Journal of Electronic Materials | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyvinylidene fluoride (PVDF) is a semi-crystalline ferroelectric polymer which can be stabilized in its distinct electroactive polymorphs α and γ by selective processing techniques. In this article, to study the effect of processing temperature and barium calcium zirconium titanate (BCZT) ceramic-doping on PVDF phase stabilization, the pure PVDF and PVDF/BCZT composite films were fabricated by solution-casting and melt-pressing. The Fourier-transform infrared spectroscopy and x-ray diffraction studies showed that the pure PVDF and PVDF/BCZT composite films fabricated by solution-casting possessed the characteristic γ-PVDF peaks while melt-pressing stabilized PVDF mostly in the α-phase. The BCZT ceramic particles were found to have no significant effect on PVDF phase stabilization, but it enhanced the overall crystallinity of polymer matrix. The dielectric studies revealed that the relative permittivity (εr) of γ- and α-PVDF phases in pure PVDF film samples was ≈ 10 and 7.5 (at 120 Hz) respectively. The εr of PVDF/BCZT composite films having 50 wt.% BCZT content synthesized by solution-casting and melt-pressing were estimated to be ≈ 31 and 20 (at 120 Hz), respectively, which was about three times that of pure PVDF film synthesized by the respective technique. The value of loss tangent (tanδ) for pure PVDF films synthesized by solution-cast and melt-press technique were ≈ 0.07 and 0.35 (at 120 Hz) respectively. In temperature-dependent dielectric studies, γ-PVDF showed distinct α-relaxation peak at ≈ 120°C and polymer melting at temperature > 130°C. For α-PVDF, the increase in εr and tanδ was observed during α-relaxation transition at higher temperatures. The dielectric studies indicated that the introduction of BCZT ceramic particles in PVDF matrix increased the εr-value by enhancing the dipolar and interfacial polarizations in composites, while the decrease in tanδ-value was observed due to decrease in molecular dipoles with a decrease in wt.% of PVDF content. These phenomena collectively improved the overall electric properties of ceramic/polymer composites which makes them suitable candidates to explore for flexible electroactive material form.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).CrossRef P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).CrossRef
4.
5.
go back to reference M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, and D.M. de Leeuw, Nat. Mater. 12, 433 (2013).CrossRef M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, and D.M. de Leeuw, Nat. Mater. 12, 433 (2013).CrossRef
6.
go back to reference Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015).CrossRef Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015).CrossRef
7.
go back to reference F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, and K. Li, J. Memb. Sci. 375, 1 (2011).CrossRef F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, and K. Li, J. Memb. Sci. 375, 1 (2011).CrossRef
9.
go back to reference M.G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, Eur. Polym. J. 43, 1557 (2007).CrossRef M.G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, Eur. Polym. J. 43, 1557 (2007).CrossRef
10.
go back to reference N.A. Hoque, P. Thakur, S. Roy, A. Kool, B. Bagchi, P. Biswas, M.M. Saikh, F. Khatun, S. Das, and P.P. Ray, MACS Appl. Mater. Interfaces 9, 23048 (2017).CrossRef N.A. Hoque, P. Thakur, S. Roy, A. Kool, B. Bagchi, P. Biswas, M.M. Saikh, F. Khatun, S. Das, and P.P. Ray, MACS Appl. Mater. Interfaces 9, 23048 (2017).CrossRef
11.
go back to reference H. Wang, Q. Chen, W. Xia, X. Qiu, Q. Cheng, and G. Zhu, J. Appl. Polym. Sci. 135, 46324 (2018).CrossRef H. Wang, Q. Chen, W. Xia, X. Qiu, Q. Cheng, and G. Zhu, J. Appl. Polym. Sci. 135, 46324 (2018).CrossRef
12.
13.
go back to reference S.P. Muduli, S. Parida, S.K. Rout, S. Rajput, and M. Kar, Mater. Res. Express 6, 095306 (2019).CrossRef S.P. Muduli, S. Parida, S.K. Rout, S. Rajput, and M. Kar, Mater. Res. Express 6, 095306 (2019).CrossRef
14.
go back to reference I.O. Pariy, A.A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, M.A. Surmeneva, and R.A. Surmenev, Mater. Chem. Phys. 239, 122035 (2020).CrossRef I.O. Pariy, A.A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, M.A. Surmeneva, and R.A. Surmenev, Mater. Chem. Phys. 239, 122035 (2020).CrossRef
15.
go back to reference T. Men, X. Liu, B. Jiang, X. Long, and H. Guo, Thin Solid Films 669, 579 (2019).CrossRef T. Men, X. Liu, B. Jiang, X. Long, and H. Guo, Thin Solid Films 669, 579 (2019).CrossRef
16.
go back to reference V.K. Tiwari, Y. Lee, G. Song, K. Lib Kim, Y. Jung Park, and C. Park, J. Polym. Sci. Part B Polym. Phys. 56, 795 (2018).CrossRef V.K. Tiwari, Y. Lee, G. Song, K. Lib Kim, Y. Jung Park, and C. Park, J. Polym. Sci. Part B Polym. Phys. 56, 795 (2018).CrossRef
17.
go back to reference S. Yang, F. Wang, X. Li, Y. Wu, T. Chang, Z. Hu, and G. An, Polymer (Guildf) 181, 121784 (2019).CrossRef S. Yang, F. Wang, X. Li, Y. Wu, T. Chang, Z. Hu, and G. An, Polymer (Guildf) 181, 121784 (2019).CrossRef
18.
go back to reference S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R. Bera, L. Halder, A.K. Mishra, J.K. Kim, and B.B. Khatua, Nano Energy 59, 169 (2019).CrossRef S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R. Bera, L. Halder, A.K. Mishra, J.K. Kim, and B.B. Khatua, Nano Energy 59, 169 (2019).CrossRef
19.
go back to reference S.-H. Kim, S.-J. Park, C.-Y. Cho, H.S. Kang, E.-H. Sohn, I.J. Park, J.-W. Ha, and S.G. Lee, RSC Adv. 9, 40286 (2019).CrossRef S.-H. Kim, S.-J. Park, C.-Y. Cho, H.S. Kang, E.-H. Sohn, I.J. Park, J.-W. Ha, and S.G. Lee, RSC Adv. 9, 40286 (2019).CrossRef
20.
go back to reference P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, and S. Das, Nano Energy 44, 456 (2018).CrossRef P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, and S. Das, Nano Energy 44, 456 (2018).CrossRef
21.
go back to reference A. Gebrekrstos, G. Prasanna Kar, G. Madras, A. Misra, and S. Bose, Polymer (Guildf) 181, 121764 (2019).CrossRef A. Gebrekrstos, G. Prasanna Kar, G. Madras, A. Misra, and S. Bose, Polymer (Guildf) 181, 121764 (2019).CrossRef
22.
go back to reference N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski, J.G. Shapter, and A.V. Ellis, Energy Environ. Sci. 12, 1143 (2019).CrossRef N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski, J.G. Shapter, and A.V. Ellis, Energy Environ. Sci. 12, 1143 (2019).CrossRef
23.
go back to reference P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, S. Roy, N. Sepay, S. Das, and P. Nandy, RSC Adv. 6, 26288 (2016).CrossRef P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, S. Roy, N. Sepay, S. Das, and P. Nandy, RSC Adv. 6, 26288 (2016).CrossRef
25.
26.
go back to reference U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005). U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005).
27.
go back to reference H. Lu, L. Liu, J. Lin, W. Yang, L. Weng, X. Zhang, G. Chen, and W. Huang, J. Appl. Polym. Sci. 134, 45362 (2017).CrossRef H. Lu, L. Liu, J. Lin, W. Yang, L. Weng, X. Zhang, G. Chen, and W. Huang, J. Appl. Polym. Sci. 134, 45362 (2017).CrossRef
28.
go back to reference M.E. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, and L. Pardo, Materials (Basel, Switzerland) 9, 21 (2016).CrossRef M.E. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, and L. Pardo, Materials (Basel, Switzerland) 9, 21 (2016).CrossRef
30.
go back to reference M. Bashir, and P. Rajendran, J. Intell. Mater. Syst. Struct. 29, 3681 (2018).CrossRef M. Bashir, and P. Rajendran, J. Intell. Mater. Syst. Struct. 29, 3681 (2018).CrossRef
31.
go back to reference B. Stadlober, M. Zirkl, and M. Irimia-Vladu, Chem. Soc. Rev. 48, 1787 (2019).CrossRef B. Stadlober, M. Zirkl, and M. Irimia-Vladu, Chem. Soc. Rev. 48, 1787 (2019).CrossRef
32.
go back to reference H.B. Jung, J.W. Kim, J.H. Lim, D.K. Kwon, D.H. Choi, and D.Y. Jeong, Electron. Mater. Lett. 16, 47 (2019).CrossRef H.B. Jung, J.W. Kim, J.H. Lim, D.K. Kwon, D.H. Choi, and D.Y. Jeong, Electron. Mater. Lett. 16, 47 (2019).CrossRef
34.
35.
go back to reference B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313, 334 (2006).CrossRef B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 313, 334 (2006).CrossRef
36.
go back to reference H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, and C. Wan, Chem. Soc. Rev. 48, 4424 (2019).CrossRef H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, and C. Wan, Chem. Soc. Rev. 48, 4424 (2019).CrossRef
38.
go back to reference M. Guo, J. Jiang, Z. Shen, Y. Lin, C.W. Nan, and Y. Shen, Mater. Today 29, 49 (2019).CrossRef M. Guo, J. Jiang, Z. Shen, Y. Lin, C.W. Nan, and Y. Shen, Mater. Today 29, 49 (2019).CrossRef
39.
go back to reference C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Mater. 2, 1 (2016). C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Mater. 2, 1 (2016).
40.
go back to reference A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho Moreira, and M.J.M. Gomes, Ceram. Int. 45, 5808 (2019).CrossRef A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho Moreira, and M.J.M. Gomes, Ceram. Int. 45, 5808 (2019).CrossRef
42.
go back to reference M. Peddigari, H. Palneedi, G.T. Hwang, and J. Ryu, J. Korean Ceram. Soc. 56, 1 (2019).CrossRef M. Peddigari, H. Palneedi, G.T. Hwang, and J. Ryu, J. Korean Ceram. Soc. 56, 1 (2019).CrossRef
43.
go back to reference T. Garg, V. Annapureddy, K.C. Sekhar, D. Jeong, N. Dabra, and J.S. Hundal, Polym. Compos. 41, 5305 (2020).CrossRef T. Garg, V. Annapureddy, K.C. Sekhar, D. Jeong, N. Dabra, and J.S. Hundal, Polym. Compos. 41, 5305 (2020).CrossRef
45.
go back to reference Z. Wang, K. Zhao, X. Guo, W. Sun, H. Jiang, X. Han, X. Tao, Z. Cheng, H. Zhao, H. Kimura, G. Yuan, J. Yin, and Z. Liu, J. Mater. Chem. C 1, 522 (2013).CrossRef Z. Wang, K. Zhao, X. Guo, W. Sun, H. Jiang, X. Han, X. Tao, Z. Cheng, H. Zhao, H. Kimura, G. Yuan, J. Yin, and Z. Liu, J. Mater. Chem. C 1, 522 (2013).CrossRef
46.
go back to reference J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, and D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015).CrossRef J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, and D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015).CrossRef
47.
go back to reference A.V. Reddy, K.C. Sekhar, N. Dabra, A. Nautiyal, J.S. Hundal, N.P. Pathak, and R. Nath, ISRN Mater. Sci. 2011, 1 (2011).CrossRef A.V. Reddy, K.C. Sekhar, N. Dabra, A. Nautiyal, J.S. Hundal, N.P. Pathak, and R. Nath, ISRN Mater. Sci. 2011, 1 (2011).CrossRef
48.
go back to reference N. Kumar, N. Dabra, J.S. Hundal, and R. Nath, Ferroelectr. Lett. Sect. 40, 108 (2013).CrossRef N. Kumar, N. Dabra, J.S. Hundal, and R. Nath, Ferroelectr. Lett. Sect. 40, 108 (2013).CrossRef
49.
go back to reference M. Sharma, J.K. Quamara, and A. Gaur, J. Mater. Sci. Mater. Electron. 29, 10875 (2018).CrossRef M. Sharma, J.K. Quamara, and A. Gaur, J. Mater. Sci. Mater. Electron. 29, 10875 (2018).CrossRef
50.
51.
go back to reference H.S. Mohanty, A. Kumar, P.K. Kulriya, R. Thomas, and D.K. Pradhan, Mater. Chem. Phys. 230, 221 (2019).CrossRef H.S. Mohanty, A. Kumar, P.K. Kulriya, R. Thomas, and D.K. Pradhan, Mater. Chem. Phys. 230, 221 (2019).CrossRef
52.
go back to reference A.N. Arshad, M.H.M. Wahid, M. Rusop, W.H.A. Majid, R.H.Y. Subban, and M.D. Rozana, J. Nanomater. 2019, 1 (2019).CrossRef A.N. Arshad, M.H.M. Wahid, M. Rusop, W.H.A. Majid, R.H.Y. Subban, and M.D. Rozana, J. Nanomater. 2019, 1 (2019).CrossRef
53.
go back to reference L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers (Basel) 10, 1 (2018).CrossRef L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers (Basel) 10, 1 (2018).CrossRef
54.
go back to reference T. Garg, N. Dabra and J.S. Hundal, Proceedings of the National Conference on Materials Science (2021) Communicated. T. Garg, N. Dabra and J.S. Hundal, Proceedings of the National Conference on Materials Science (2021) Communicated.
55.
go back to reference T.S. Chow, C.A. Liu, and R.C. Penwell, J. Polym. Sci. Polym. Phys. Ed. 14, 1311 (1976).CrossRef T.S. Chow, C.A. Liu, and R.C. Penwell, J. Polym. Sci. Polym. Phys. Ed. 14, 1311 (1976).CrossRef
57.
go back to reference J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, and H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015).CrossRef J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, and H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015).CrossRef
58.
go back to reference H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, and A. Kallel, Compos. Part B Eng. 45, 1199 (2013).CrossRef H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, and A. Kallel, Compos. Part B Eng. 45, 1199 (2013).CrossRef
59.
60.
go back to reference Z.M. Dang, L. Wang, H.Y. Wang, C.W. Nan, D. Xie, Y. Yin, and S.C. Tjong, Appl. Phys. Lett. 86, 1 (2005).CrossRef Z.M. Dang, L. Wang, H.Y. Wang, C.W. Nan, D. Xie, Y. Yin, and S.C. Tjong, Appl. Phys. Lett. 86, 1 (2005).CrossRef
61.
go back to reference A. Pramanick, S. Misture, N.C. Osti, N. Jalarvo, S.O. Diallo, and E. Mamontov, Phys. Rev. B 96, 174103 (2017).CrossRef A. Pramanick, S. Misture, N.C. Osti, N. Jalarvo, S.O. Diallo, and E. Mamontov, Phys. Rev. B 96, 174103 (2017).CrossRef
62.
63.
go back to reference F. Bensadoun, N. Kchit, C. Billotte, F. Trochu, and E. Ruiz, J. Nanomater. 2011, 1 (2011).CrossRef F. Bensadoun, N. Kchit, C. Billotte, F. Trochu, and E. Ruiz, J. Nanomater. 2011, 1 (2011).CrossRef
Metadata
Title
Dielectric Properties and Phase Stabilization of PVDF Polymer in (1−x)PVDF/xBCZT Composite Films
Authors
Tarun Garg
Venkateswarlu Annapureddy
K. C. Sekhar
Dae-Yong Jeong
Navneet Dabra
Jasbir S. Hundal
Publication date
08-07-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 10/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09075-4

Other articles of this Issue 10/2021

Journal of Electronic Materials 10/2021 Go to the issue