Skip to main content
Top
Published in: Journal of Visualization 3/2021

15-04-2021 | Regular Paper

DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing

Authors: Tawfiq Chekifi, Moustafa Boukraa, Mouloud Aissani

Published in: Journal of Visualization | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerical simulations are performed to investigate the breakup of air bubble in flow focusing configuration; the CLSVOF (coupled level set with volume of fluid) method is employed to track the interface, which allows a better identification of the liquid–gas interface via a function called level set. The CFD simulations showed that the velocity ratio, the interfacial tension, the outer channel diameter, the continuous phase viscosity, the orifice width and length play an important role in the determination of the air bubble’s size and shape. However, at low capillary number, increasing the flow velocity ratio gives a smaller bubble size in shorter time, while the increase in interfacial tension leads to a bigger bubble. Moreover, the carrier fluid is found to slightly affect the bubbling mechanism, while the smallest bubbles were obtained with the smallest orifice size. In addition, three breakup regimes are observed in this device: disc-bubble (DB), elongated bubble (EB) and the slug bubble (SB) regime flows. This work also demonstrates that the CLSVOF is an effective method to simulate the bubbles breakup in flow focusing geometry. In addition, a comparison of our computational simulations with available experimental results reveals reasonably good agreement.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Albadawi A, Donoghue DB, Robinson AJ, Murray DB, Delauré YMC (2013) Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int J Multiph Flow 53:11–28CrossRef Albadawi A, Donoghue DB, Robinson AJ, Murray DB, Delauré YMC (2013) Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int J Multiph Flow 53:11–28CrossRef
go back to reference Antonietti M, Tauer K (2003) 90 years of polymer latexes and heterophase polymerization: more vital than ever. Macromol Chem Phys 204(2):207–219CrossRef Antonietti M, Tauer K (2003) 90 years of polymer latexes and heterophase polymerization: more vital than ever. Macromol Chem Phys 204(2):207–219CrossRef
go back to reference Arias S, Legendre D, González-Cinca R (2012) Numerical simulation of bubble generation in a T-junction. Comput Fluids 56:49–60CrossRef Arias S, Legendre D, González-Cinca R (2012) Numerical simulation of bubble generation in a T-junction. Comput Fluids 56:49–60CrossRef
go back to reference Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75(4):046302CrossRef Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75(4):046302CrossRef
go back to reference Castro-Hernández E, van Hoeve W, Lohse D, Gordillo JM (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11(12):2023–2029CrossRef Castro-Hernández E, van Hoeve W, Lohse D, Gordillo JM (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11(12):2023–2029CrossRef
go back to reference Chekifi T (2018) Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Meas Instrum 59:118–125CrossRef Chekifi T (2018) Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Meas Instrum 59:118–125CrossRef
go back to reference Chekifi T, Dennai B, Khelfaoui R (2015) Numerical simulation of droplet breakup, splitting and sorting in a microfluidic device. FDMP-Fluid dynamics materials processing 11(3):205–220 Chekifi T, Dennai B, Khelfaoui R (2015) Numerical simulation of droplet breakup, splitting and sorting in a microfluidic device. FDMP-Fluid dynamics materials processing 11(3):205–220
go back to reference Chekifi T, Dennai B, Khelfaoui R, Maazouzi A (2016) Numerical and experimental investigation of fluidic microdrops manipulation by Fluidic Mono-Stable Oscillator. Int J Fluid Mech Res 43(1):50–61CrossRef Chekifi T, Dennai B, Khelfaoui R, Maazouzi A (2016) Numerical and experimental investigation of fluidic microdrops manipulation by Fluidic Mono-Stable Oscillator. Int J Fluid Mech Res 43(1):50–61CrossRef
go back to reference Dollet B, van Hoeve W, Raven JP, Marmottant P, Versluis M (2008) Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys Rev Lett 100(3):034504CrossRef Dollet B, van Hoeve W, Raven JP, Marmottant P, Versluis M (2008) Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys Rev Lett 100(3):034504CrossRef
go back to reference Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64(10):2392–2400CrossRef Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64(10):2392–2400CrossRef
go back to reference Ganán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501CrossRef Ganán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501CrossRef
go back to reference Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651CrossRef Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651CrossRef
go back to reference Garstecki P, Fuerstman MJ, Whitesides GM (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234502CrossRef Garstecki P, Fuerstman MJ, Whitesides GM (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234502CrossRef
go back to reference Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRef Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446CrossRef
go back to reference Kim J, Lowengrub J (2004) Interfaces and multicomponent fluids. Encyclopedia of Mathematical Physics, pp. 135–144 Kim J, Lowengrub J (2004) Interfaces and multicomponent fluids. Encyclopedia of Mathematical Physics, pp. 135–144
go back to reference Lu Y, Fu T, Zhu C, Ma Y, Li HZ (2014) Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity. Chem Eng Sci 105:213–219CrossRef Lu Y, Fu T, Zhu C, Ma Y, Li HZ (2014) Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity. Chem Eng Sci 105:213–219CrossRef
go back to reference Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4(10):729CrossRef Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4(10):729CrossRef
go back to reference Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136MathSciNetCrossRef Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136MathSciNetCrossRef
go back to reference Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337MathSciNetCrossRef Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337MathSciNetCrossRef
go back to reference Tadros TF (1993) Industrial applications of dispersions. Adv Coll Interface Sci 46:1–47CrossRef Tadros TF (1993) Industrial applications of dispersions. Adv Coll Interface Sci 46:1–47CrossRef
go back to reference van Hoeve W, Dollet B, Versluis M, Lohse D (2011) Microbubble formation and pinch-off scaling exponent in flow-focusing devices. Phys Fluids 23(9):092001CrossRef van Hoeve W, Dollet B, Versluis M, Lohse D (2011) Microbubble formation and pinch-off scaling exponent in flow-focusing devices. Phys Fluids 23(9):092001CrossRef
go back to reference Wang ZL (2015) Speed up bubbling in a tapered co-flow geometry. Chem Eng J 263:346–355CrossRef Wang ZL (2015) Speed up bubbling in a tapered co-flow geometry. Chem Eng J 263:346–355CrossRef
go back to reference Wang K, Xie L, Lu Y, Luo G (2013) Generating microbubbles in a co-flowing microfluidic device. Chem Eng Sci 100:486–495CrossRef Wang K, Xie L, Lu Y, Luo G (2013) Generating microbubbles in a co-flowing microfluidic device. Chem Eng Sci 100:486–495CrossRef
go back to reference Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368CrossRef
go back to reference Yobas L, Martens S, Ong W-L, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079CrossRef Yobas L, Martens S, Ong W-L, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079CrossRef
Metadata
Title
DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing
Authors
Tawfiq Chekifi
Moustafa Boukraa
Mouloud Aissani
Publication date
15-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Journal of Visualization / Issue 3/2021
Print ISSN: 1343-8875
Electronic ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00715-1

Other articles of this Issue 3/2021

Journal of Visualization 3/2021 Go to the issue

Premium Partner