Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 18/2021

22-08-2021

DSSCs: a facile and low-cost MgSnO3-based transparent conductive oxides via nebulized spray pyrolysis technique

Authors: G. Kiruthiga, T. Raguram, K. S. Rajni, P. Selvakumar, E. Nandhakumar

Published in: Journal of Materials Science: Materials in Electronics | Issue 18/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The primary focus of this investigation was constructing worthwhile and cost-effective TCO substrate to make low-cost dye-sensitized solar cells entirely. Magnesium tin oxide substrates were prepared at a substrate temperature of 400 °C via nebulizer spray pyrolysis approach with different molar ratios of magnesium and tin (S1–0.1 M:0.4 M and S2–0.1 M:0.5 M) precursors. The annealing temperature was kept at 400 °C for three hours. While analyzing the properties of the prepared substrates, the following results were obtained. The thickness of the prepared samples for S1 and S2 increases from 0.47 to 0.56 μm, respectively. From the XRD results, the prepared samples were rhombohedral inistructure, and the grain size was found to be 31 (S1) and 40 (S2) nm. From the observations of optical studies, the percentage of transmission exceeds 80% and corresponding band-gap values were found to be 3.59 eV (S1) and 3.66 eV (S2). From Hall voltage measurement, it was noted that MgSnO3 shows n-type conductivity. The resistivity value was observed to be low of the order of 10–4 Ω cm which was closer to the resistivity of existing commercially available TCO substrates (for FTO: ~ 7 to ~ 10 Ω cm and for ITO: ~ 8 to ~ 12 Ω cm). FESEM results ensure that the prepared films were leaf-like structures. EDAX analysis shows that the atomic percentage of required elements (Mg, Sn, O) present in the prepared samples. The FTIR analysis ensures the appearance of hydroxyl and water functional groups owing to atmospheric water vapors and the chemical bonding in MgO and MgO–SnO. DSSC’s was fabricated with different combinations of FTO/MTO photoanodes and counter electrodes and the efficiency of the cells has been compared. The maximum efficiency of 3.95% was obtained for the fabricated DSSC using MTO as a substrate for photoanode and counter electrodes which was higher than that of other combinations of FTO/MTO substrates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.J.Young, L.A. Martini, R.L. Milot, R.C. Snoeberger, V. S Batista,C.A. Schmuttenmaer, R.H Crabtree, G.W Brudvig, Chem. Rev. 256, 2503 (2012) K.J.Young, L.A. Martini, R.L. Milot, R.C. Snoeberger, V. S Batista,C.A. Schmuttenmaer, R.H Crabtree, G.W Brudvig, Chem. Rev. 256, 2503 (2012)
4.
go back to reference K.L Chopra, S.R. Das, Thin Film Solar Cells (Springer, NewYork, 1983), p. 1CrossRef K.L Chopra, S.R. Das, Thin Film Solar Cells (Springer, NewYork, 1983), p. 1CrossRef
5.
go back to reference A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, India, 1995), p. 31 A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, India, 1995), p. 31
6.
go back to reference R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, Appl. Surf. Sci. 449, 166 (2018)CrossRef R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, Appl. Surf. Sci. 449, 166 (2018)CrossRef
8.
go back to reference K.S. Rajni, T. Raguram, John Wiley & Sons, Inc, New Jersey 139 (2019) K.S. Rajni, T. Raguram, John Wiley & Sons, Inc, New Jersey 139 (2019)
10.
go back to reference Y. Yao, E. Brueckner, L. Li, R. Nuzzo, Energ. and Envir. Sci. 6, 3071 (2013)CrossRef Y. Yao, E. Brueckner, L. Li, R. Nuzzo, Energ. and Envir. Sci. 6, 3071 (2013)CrossRef
11.
go back to reference C. Kost, J.N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, T. Schlegl, Fraunhofer Institute for Solar Energy System (2013) C. Kost, J.N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, T. Schlegl, Fraunhofer Institute for Solar Energy System (2013)
13.
go back to reference A. Suyitno, A. Zainal, S. Ahmad, T.S. Argatya, Appl. Mech. Mater. 575, 689 (2014)CrossRef A. Suyitno, A. Zainal, S. Ahmad, T.S. Argatya, Appl. Mech. Mater. 575, 689 (2014)CrossRef
14.
15.
go back to reference V.M. Ramakrishnan, N. Muthukumarasamy, P. Balraju, S. Pitchaiya, D. Velauthapillai, A. Pugazhendhi, Int. J. Hydrog. Energy 45, 15441 (2020)CrossRef V.M. Ramakrishnan, N. Muthukumarasamy, P. Balraju, S. Pitchaiya, D. Velauthapillai, A. Pugazhendhi, Int. J. Hydrog. Energy 45, 15441 (2020)CrossRef
16.
go back to reference V.M. Ramakrishnan, M. Natarajan, S. Pitchaiya, A. Santhanam, D. Velauthapillai, A. Pugazhendhi, Int. J. Energy Res. 1 (2020) V.M. Ramakrishnan, M. Natarajan, S. Pitchaiya, A. Santhanam, D. Velauthapillai, A. Pugazhendhi, Int. J. Energy Res. 1 (2020)
18.
go back to reference M.N.R. Ashfold, P.W. May, C.A. Rego, N.M. Everitt, Chem. Soc. Rev. 23, 21 (1994)CrossRef M.N.R. Ashfold, P.W. May, C.A. Rego, N.M. Everitt, Chem. Soc. Rev. 23, 21 (1994)CrossRef
19.
go back to reference R. Bhakta, R. Thomas, F. Hipler, H.F. Bettinger, J. Muller, P.A. Ehrhart, P. Devi, J. Mater. Chem. 14, 3231 (2004)CrossRef R. Bhakta, R. Thomas, F. Hipler, H.F. Bettinger, J. Muller, P.A. Ehrhart, P. Devi, J. Mater. Chem. 14, 3231 (2004)CrossRef
21.
go back to reference A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Jour. Appl. Phy. 98, 12330 (2005) A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Jour. Appl. Phy. 98, 12330 (2005)
22.
go back to reference R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa, Phy. Rev. Lett. 65, 733 (1990)CrossRef R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa, Phy. Rev. Lett. 65, 733 (1990)CrossRef
25.
go back to reference J. Alfonso, M. Cardenas, J. Marco, J. Supercond. Nov. Magn. 26, 2463 (2013)CrossRef J. Alfonso, M. Cardenas, J. Marco, J. Supercond. Nov. Magn. 26, 2463 (2013)CrossRef
26.
go back to reference T. Sugahara, Y. Hirose, S. Cong, H. Koga, J. Jiu, M. Nogi, S. Nagao, J. Am. Ceram. Soc. 97, 3238 (2014)CrossRef T. Sugahara, Y. Hirose, S. Cong, H. Koga, J. Jiu, M. Nogi, S. Nagao, J. Am. Ceram. Soc. 97, 3238 (2014)CrossRef
27.
go back to reference S. Islam, N. Bidin, M.A. Saeed, S. Riaz, M.A.A. Bakar, S. Naseem, K.N. Abbas, M.M. Sanagi, J. Sol gel Sci. Technol. 81, 623 (2017)CrossRef S. Islam, N. Bidin, M.A. Saeed, S. Riaz, M.A.A. Bakar, S. Naseem, K.N. Abbas, M.M. Sanagi, J. Sol gel Sci. Technol. 81, 623 (2017)CrossRef
28.
go back to reference S.M. Sabnis, A. Prakash, P.A. Bhadane, P.G. Kulkarni et al., J. Appl. Phys. 4, 7 (2013) S.M. Sabnis, A. Prakash, P.A. Bhadane, P.G. Kulkarni et al., J. Appl. Phys. 4, 7 (2013)
29.
go back to reference A. Rahal, R.S. Benramache, B. Benhaoua, J. Semicond. 34, 1 (2013) A. Rahal, R.S. Benramache, B. Benhaoua, J. Semicond. 34, 1 (2013)
30.
32.
go back to reference S.S. Pan, C. Ye, X.M. Teng, G.H. Li, J. Phys. D Appl. Phys. 40, 4771 (2007)CrossRef S.S. Pan, C. Ye, X.M. Teng, G.H. Li, J. Phys. D Appl. Phys. 40, 4771 (2007)CrossRef
34.
go back to reference M. Ali, M. Kibrahim, M.Z. Pakhuruddin, M.G. Faraj, J. Adv. Mater. Res. 545, 393 (2012)CrossRef M. Ali, M. Kibrahim, M.Z. Pakhuruddin, M.G. Faraj, J. Adv. Mater. Res. 545, 393 (2012)CrossRef
35.
37.
go back to reference G. Kiruthiga Prabhu, T. Raguram, K.S. Rajni, I.O.P. Conf, IOP Conf. Ser. Mater. Sci. Eng. 57, 012093 (2019)CrossRef G. Kiruthiga Prabhu, T. Raguram, K.S. Rajni, I.O.P. Conf, IOP Conf. Ser. Mater. Sci. Eng. 57, 012093 (2019)CrossRef
38.
go back to reference C.N.R Rao, K. Biswas, et al. (eds.) Essentials of Inorganic Materials Synthesis (John Wiley & Sons, 2015), p. 97 C.N.R Rao, K. Biswas, et al. (eds.) Essentials of Inorganic Materials Synthesis (John Wiley & Sons, 2015), p. 97
40.
42.
go back to reference V.K. Premkumar, G. Sivakumar, J. Mater. Sci. Mater. Electron. 28, 14226 (2017)CrossRef V.K. Premkumar, G. Sivakumar, J. Mater. Sci. Mater. Electron. 28, 14226 (2017)CrossRef
45.
go back to reference F.T. Thema, P. Beukes, A. Gurib-Fakim, M.J. Maaza, J. Alloys Compd. 646, 1043 (2015)CrossRef F.T. Thema, P. Beukes, A. Gurib-Fakim, M.J. Maaza, J. Alloys Compd. 646, 1043 (2015)CrossRef
47.
go back to reference H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23, 355705 (2012)CrossRef H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23, 355705 (2012)CrossRef
48.
go back to reference A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5, 539193 (2015) A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5, 539193 (2015)
49.
go back to reference A. Kumar, A.C. Pandey, R. Prakash, Catal. Sci. Techno. 12, 533 (2012) A. Kumar, A.C. Pandey, R. Prakash, Catal. Sci. Techno. 12, 533 (2012)
50.
go back to reference Hu. Ziyang, J. Zhang, Z. Hao, Q. Hao, X. Geng, Y. Zhao, Appl. Phys. Lett. 98, 123302 (2011)CrossRef Hu. Ziyang, J. Zhang, Z. Hao, Q. Hao, X. Geng, Y. Zhao, Appl. Phys. Lett. 98, 123302 (2011)CrossRef
51.
go back to reference J. Kennedy, P.P. Murmu, P.S. Gupta, D.A. Carder, S.V. Chong, J. Leveneurand, S. Rubanov, Mater. Sci. Semi. Proc. 26, 561 (2014)CrossRef J. Kennedy, P.P. Murmu, P.S. Gupta, D.A. Carder, S.V. Chong, J. Leveneurand, S. Rubanov, Mater. Sci. Semi. Proc. 26, 561 (2014)CrossRef
52.
go back to reference X. Yin, Z. Xue, L. Wang, Y. Cheng, B. Liu, A.C.S. Appl, Mater. Interfaces 4, 1709 (2012)CrossRef X. Yin, Z. Xue, L. Wang, Y. Cheng, B. Liu, A.C.S. Appl, Mater. Interfaces 4, 1709 (2012)CrossRef
53.
54.
go back to reference N. SenthilKumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I.V. Potheher, Mater. Sci. Mater. Electron. 29, 12744 (2018)CrossRef N. SenthilKumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I.V. Potheher, Mater. Sci. Mater. Electron. 29, 12744 (2018)CrossRef
55.
go back to reference P.N. Eswaramoorthy, M. Natarajan, A. Santhanam, V.M. Ramakrishnan, V. Asokan, P. Palanichamy, B. Palanisamy, A.D. KalimuthuVelauthapillai, New J. Chem. 44, 8422–8433 (2020)CrossRef P.N. Eswaramoorthy, M. Natarajan, A. Santhanam, V.M. Ramakrishnan, V. Asokan, P. Palanichamy, B. Palanisamy, A.D. KalimuthuVelauthapillai, New J. Chem. 44, 8422–8433 (2020)CrossRef
56.
go back to reference S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol. Eng. Mater. and Sol. Cells. 90, 2129–2140 (2006)CrossRef S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol. Eng. Mater. and Sol. Cells. 90, 2129–2140 (2006)CrossRef
57.
go back to reference S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, Y. Wei, Sol. Energy 76, 745 (2004)CrossRef S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, Y. Wei, Sol. Energy 76, 745 (2004)CrossRef
58.
go back to reference W.K. Dong, S.S. Seong, L. SangWook, S. Cho, H.K. Dong, W.L. Chan, S.J. Hyun, S.H. Kug, Chemsuschem 6, 449 (2013)CrossRef W.K. Dong, S.S. Seong, L. SangWook, S. Cho, H.K. Dong, W.L. Chan, S.J. Hyun, S.H. Kug, Chemsuschem 6, 449 (2013)CrossRef
60.
61.
Metadata
Title
DSSCs: a facile and low-cost MgSnO3-based transparent conductive oxides via nebulized spray pyrolysis technique
Authors
G. Kiruthiga
T. Raguram
K. S. Rajni
P. Selvakumar
E. Nandhakumar
Publication date
22-08-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 18/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06754-0

Other articles of this Issue 18/2021

Journal of Materials Science: Materials in Electronics 18/2021 Go to the issue