Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 18/2021

22.08.2021

DSSCs: a facile and low-cost MgSnO3-based transparent conductive oxides via nebulized spray pyrolysis technique

verfasst von: G. Kiruthiga, T. Raguram, K. S. Rajni, P. Selvakumar, E. Nandhakumar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 18/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The primary focus of this investigation was constructing worthwhile and cost-effective TCO substrate to make low-cost dye-sensitized solar cells entirely. Magnesium tin oxide substrates were prepared at a substrate temperature of 400 °C via nebulizer spray pyrolysis approach with different molar ratios of magnesium and tin (S1–0.1 M:0.4 M and S2–0.1 M:0.5 M) precursors. The annealing temperature was kept at 400 °C for three hours. While analyzing the properties of the prepared substrates, the following results were obtained. The thickness of the prepared samples for S1 and S2 increases from 0.47 to 0.56 μm, respectively. From the XRD results, the prepared samples were rhombohedral inistructure, and the grain size was found to be 31 (S1) and 40 (S2) nm. From the observations of optical studies, the percentage of transmission exceeds 80% and corresponding band-gap values were found to be 3.59 eV (S1) and 3.66 eV (S2). From Hall voltage measurement, it was noted that MgSnO3 shows n-type conductivity. The resistivity value was observed to be low of the order of 10–4 Ω cm which was closer to the resistivity of existing commercially available TCO substrates (for FTO: ~ 7 to ~ 10 Ω cm and for ITO: ~ 8 to ~ 12 Ω cm). FESEM results ensure that the prepared films were leaf-like structures. EDAX analysis shows that the atomic percentage of required elements (Mg, Sn, O) present in the prepared samples. The FTIR analysis ensures the appearance of hydroxyl and water functional groups owing to atmospheric water vapors and the chemical bonding in MgO and MgO–SnO. DSSC’s was fabricated with different combinations of FTO/MTO photoanodes and counter electrodes and the efficiency of the cells has been compared. The maximum efficiency of 3.95% was obtained for the fabricated DSSC using MTO as a substrate for photoanode and counter electrodes which was higher than that of other combinations of FTO/MTO substrates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.J.Young, L.A. Martini, R.L. Milot, R.C. Snoeberger, V. S Batista,C.A. Schmuttenmaer, R.H Crabtree, G.W Brudvig, Chem. Rev. 256, 2503 (2012) K.J.Young, L.A. Martini, R.L. Milot, R.C. Snoeberger, V. S Batista,C.A. Schmuttenmaer, R.H Crabtree, G.W Brudvig, Chem. Rev. 256, 2503 (2012)
4.
Zurück zum Zitat K.L Chopra, S.R. Das, Thin Film Solar Cells (Springer, NewYork, 1983), p. 1CrossRef K.L Chopra, S.R. Das, Thin Film Solar Cells (Springer, NewYork, 1983), p. 1CrossRef
5.
Zurück zum Zitat A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, India, 1995), p. 31 A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, India, 1995), p. 31
6.
Zurück zum Zitat R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, Appl. Surf. Sci. 449, 166 (2018)CrossRef R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, Appl. Surf. Sci. 449, 166 (2018)CrossRef
8.
Zurück zum Zitat K.S. Rajni, T. Raguram, John Wiley & Sons, Inc, New Jersey 139 (2019) K.S. Rajni, T. Raguram, John Wiley & Sons, Inc, New Jersey 139 (2019)
10.
Zurück zum Zitat Y. Yao, E. Brueckner, L. Li, R. Nuzzo, Energ. and Envir. Sci. 6, 3071 (2013)CrossRef Y. Yao, E. Brueckner, L. Li, R. Nuzzo, Energ. and Envir. Sci. 6, 3071 (2013)CrossRef
11.
Zurück zum Zitat C. Kost, J.N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, T. Schlegl, Fraunhofer Institute for Solar Energy System (2013) C. Kost, J.N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, T. Schlegl, Fraunhofer Institute for Solar Energy System (2013)
13.
Zurück zum Zitat A. Suyitno, A. Zainal, S. Ahmad, T.S. Argatya, Appl. Mech. Mater. 575, 689 (2014)CrossRef A. Suyitno, A. Zainal, S. Ahmad, T.S. Argatya, Appl. Mech. Mater. 575, 689 (2014)CrossRef
14.
15.
Zurück zum Zitat V.M. Ramakrishnan, N. Muthukumarasamy, P. Balraju, S. Pitchaiya, D. Velauthapillai, A. Pugazhendhi, Int. J. Hydrog. Energy 45, 15441 (2020)CrossRef V.M. Ramakrishnan, N. Muthukumarasamy, P. Balraju, S. Pitchaiya, D. Velauthapillai, A. Pugazhendhi, Int. J. Hydrog. Energy 45, 15441 (2020)CrossRef
16.
Zurück zum Zitat V.M. Ramakrishnan, M. Natarajan, S. Pitchaiya, A. Santhanam, D. Velauthapillai, A. Pugazhendhi, Int. J. Energy Res. 1 (2020) V.M. Ramakrishnan, M. Natarajan, S. Pitchaiya, A. Santhanam, D. Velauthapillai, A. Pugazhendhi, Int. J. Energy Res. 1 (2020)
17.
18.
Zurück zum Zitat M.N.R. Ashfold, P.W. May, C.A. Rego, N.M. Everitt, Chem. Soc. Rev. 23, 21 (1994)CrossRef M.N.R. Ashfold, P.W. May, C.A. Rego, N.M. Everitt, Chem. Soc. Rev. 23, 21 (1994)CrossRef
19.
Zurück zum Zitat R. Bhakta, R. Thomas, F. Hipler, H.F. Bettinger, J. Muller, P.A. Ehrhart, P. Devi, J. Mater. Chem. 14, 3231 (2004)CrossRef R. Bhakta, R. Thomas, F. Hipler, H.F. Bettinger, J. Muller, P.A. Ehrhart, P. Devi, J. Mater. Chem. 14, 3231 (2004)CrossRef
20.
21.
Zurück zum Zitat A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Jour. Appl. Phy. 98, 12330 (2005) A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Jour. Appl. Phy. 98, 12330 (2005)
22.
Zurück zum Zitat R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa, Phy. Rev. Lett. 65, 733 (1990)CrossRef R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa, Phy. Rev. Lett. 65, 733 (1990)CrossRef
24.
25.
Zurück zum Zitat J. Alfonso, M. Cardenas, J. Marco, J. Supercond. Nov. Magn. 26, 2463 (2013)CrossRef J. Alfonso, M. Cardenas, J. Marco, J. Supercond. Nov. Magn. 26, 2463 (2013)CrossRef
26.
Zurück zum Zitat T. Sugahara, Y. Hirose, S. Cong, H. Koga, J. Jiu, M. Nogi, S. Nagao, J. Am. Ceram. Soc. 97, 3238 (2014)CrossRef T. Sugahara, Y. Hirose, S. Cong, H. Koga, J. Jiu, M. Nogi, S. Nagao, J. Am. Ceram. Soc. 97, 3238 (2014)CrossRef
27.
Zurück zum Zitat S. Islam, N. Bidin, M.A. Saeed, S. Riaz, M.A.A. Bakar, S. Naseem, K.N. Abbas, M.M. Sanagi, J. Sol gel Sci. Technol. 81, 623 (2017)CrossRef S. Islam, N. Bidin, M.A. Saeed, S. Riaz, M.A.A. Bakar, S. Naseem, K.N. Abbas, M.M. Sanagi, J. Sol gel Sci. Technol. 81, 623 (2017)CrossRef
28.
Zurück zum Zitat S.M. Sabnis, A. Prakash, P.A. Bhadane, P.G. Kulkarni et al., J. Appl. Phys. 4, 7 (2013) S.M. Sabnis, A. Prakash, P.A. Bhadane, P.G. Kulkarni et al., J. Appl. Phys. 4, 7 (2013)
29.
Zurück zum Zitat A. Rahal, R.S. Benramache, B. Benhaoua, J. Semicond. 34, 1 (2013) A. Rahal, R.S. Benramache, B. Benhaoua, J. Semicond. 34, 1 (2013)
30.
Zurück zum Zitat K. Punitha, R. Sivakumar, C. Sanjeeviraja, Ener. Proc. 15, 312 (2012)CrossRef K. Punitha, R. Sivakumar, C. Sanjeeviraja, Ener. Proc. 15, 312 (2012)CrossRef
32.
Zurück zum Zitat S.S. Pan, C. Ye, X.M. Teng, G.H. Li, J. Phys. D Appl. Phys. 40, 4771 (2007)CrossRef S.S. Pan, C. Ye, X.M. Teng, G.H. Li, J. Phys. D Appl. Phys. 40, 4771 (2007)CrossRef
34.
Zurück zum Zitat M. Ali, M. Kibrahim, M.Z. Pakhuruddin, M.G. Faraj, J. Adv. Mater. Res. 545, 393 (2012)CrossRef M. Ali, M. Kibrahim, M.Z. Pakhuruddin, M.G. Faraj, J. Adv. Mater. Res. 545, 393 (2012)CrossRef
35.
37.
Zurück zum Zitat G. Kiruthiga Prabhu, T. Raguram, K.S. Rajni, I.O.P. Conf, IOP Conf. Ser. Mater. Sci. Eng. 57, 012093 (2019)CrossRef G. Kiruthiga Prabhu, T. Raguram, K.S. Rajni, I.O.P. Conf, IOP Conf. Ser. Mater. Sci. Eng. 57, 012093 (2019)CrossRef
38.
Zurück zum Zitat C.N.R Rao, K. Biswas, et al. (eds.) Essentials of Inorganic Materials Synthesis (John Wiley & Sons, 2015), p. 97 C.N.R Rao, K. Biswas, et al. (eds.) Essentials of Inorganic Materials Synthesis (John Wiley & Sons, 2015), p. 97
39.
40.
41.
42.
Zurück zum Zitat V.K. Premkumar, G. Sivakumar, J. Mater. Sci. Mater. Electron. 28, 14226 (2017)CrossRef V.K. Premkumar, G. Sivakumar, J. Mater. Sci. Mater. Electron. 28, 14226 (2017)CrossRef
45.
Zurück zum Zitat F.T. Thema, P. Beukes, A. Gurib-Fakim, M.J. Maaza, J. Alloys Compd. 646, 1043 (2015)CrossRef F.T. Thema, P. Beukes, A. Gurib-Fakim, M.J. Maaza, J. Alloys Compd. 646, 1043 (2015)CrossRef
47.
Zurück zum Zitat H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23, 355705 (2012)CrossRef H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23, 355705 (2012)CrossRef
48.
Zurück zum Zitat A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5, 539193 (2015) A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5, 539193 (2015)
49.
Zurück zum Zitat A. Kumar, A.C. Pandey, R. Prakash, Catal. Sci. Techno. 12, 533 (2012) A. Kumar, A.C. Pandey, R. Prakash, Catal. Sci. Techno. 12, 533 (2012)
50.
Zurück zum Zitat Hu. Ziyang, J. Zhang, Z. Hao, Q. Hao, X. Geng, Y. Zhao, Appl. Phys. Lett. 98, 123302 (2011)CrossRef Hu. Ziyang, J. Zhang, Z. Hao, Q. Hao, X. Geng, Y. Zhao, Appl. Phys. Lett. 98, 123302 (2011)CrossRef
51.
Zurück zum Zitat J. Kennedy, P.P. Murmu, P.S. Gupta, D.A. Carder, S.V. Chong, J. Leveneurand, S. Rubanov, Mater. Sci. Semi. Proc. 26, 561 (2014)CrossRef J. Kennedy, P.P. Murmu, P.S. Gupta, D.A. Carder, S.V. Chong, J. Leveneurand, S. Rubanov, Mater. Sci. Semi. Proc. 26, 561 (2014)CrossRef
52.
Zurück zum Zitat X. Yin, Z. Xue, L. Wang, Y. Cheng, B. Liu, A.C.S. Appl, Mater. Interfaces 4, 1709 (2012)CrossRef X. Yin, Z. Xue, L. Wang, Y. Cheng, B. Liu, A.C.S. Appl, Mater. Interfaces 4, 1709 (2012)CrossRef
53.
54.
Zurück zum Zitat N. SenthilKumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I.V. Potheher, Mater. Sci. Mater. Electron. 29, 12744 (2018)CrossRef N. SenthilKumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I.V. Potheher, Mater. Sci. Mater. Electron. 29, 12744 (2018)CrossRef
55.
Zurück zum Zitat P.N. Eswaramoorthy, M. Natarajan, A. Santhanam, V.M. Ramakrishnan, V. Asokan, P. Palanichamy, B. Palanisamy, A.D. KalimuthuVelauthapillai, New J. Chem. 44, 8422–8433 (2020)CrossRef P.N. Eswaramoorthy, M. Natarajan, A. Santhanam, V.M. Ramakrishnan, V. Asokan, P. Palanichamy, B. Palanisamy, A.D. KalimuthuVelauthapillai, New J. Chem. 44, 8422–8433 (2020)CrossRef
56.
Zurück zum Zitat S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol. Eng. Mater. and Sol. Cells. 90, 2129–2140 (2006)CrossRef S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol. Eng. Mater. and Sol. Cells. 90, 2129–2140 (2006)CrossRef
57.
Zurück zum Zitat S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, Y. Wei, Sol. Energy 76, 745 (2004)CrossRef S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, Y. Wei, Sol. Energy 76, 745 (2004)CrossRef
58.
Zurück zum Zitat W.K. Dong, S.S. Seong, L. SangWook, S. Cho, H.K. Dong, W.L. Chan, S.J. Hyun, S.H. Kug, Chemsuschem 6, 449 (2013)CrossRef W.K. Dong, S.S. Seong, L. SangWook, S. Cho, H.K. Dong, W.L. Chan, S.J. Hyun, S.H. Kug, Chemsuschem 6, 449 (2013)CrossRef
59.
60.
61.
Metadaten
Titel
DSSCs: a facile and low-cost MgSnO3-based transparent conductive oxides via nebulized spray pyrolysis technique
verfasst von
G. Kiruthiga
T. Raguram
K. S. Rajni
P. Selvakumar
E. Nandhakumar
Publikationsdatum
22.08.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 18/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06754-0

Weitere Artikel der Ausgabe 18/2021

Journal of Materials Science: Materials in Electronics 18/2021 Zur Ausgabe

Neuer Inhalt