Skip to main content
Top
Published in: Cellulose 1/2018

20-11-2017 | Original Paper

Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release

Authors: Nanang Masruchin, Byung-Dae Park, Valerio Causin

Published in: Cellulose | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dual responsive composite hydrogels were successfully prepared by combining cellulose nanofibril (CNF) isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation with thermally responsive poly(N-isopropylacrylamide) (PNIPAAm) for drug release at 10 wt% CNF loading and − 20 °C polymerization temperature. pH responsive hydrogels were acquired by adjusting the carboxyl charge level of the CNF during TEMPO-mediated oxidation. CNF–PNIPAAm hydrogels fabricated were characterized in regards to compressive strength, functional group, low critical solution temperature (LCST), and swelling ratio of the hydrogels at different temperatures from 20 to 60 °C and pH levels from 2 to 10. Finally, the drug release behavior of these hydrogels was also investigated using methylene blue as a model drug. As the carboxylate content increases, the dual responsiveness of hydrogel improved at the expense of the compression strength. The CNF–PNIPAAm hydrogels were swollen and translucent below the LCST, and shrunken and opaque above the LCST. The Higuchi and the Krosmeyer and Peppas model was best-fitted to the drug release behavior of these hydrogels at pH 10 and pH 2, respectively. The results also indicated that a proper selection of polymerization temperature provided a way of tuning the dual-responsiveness of the hydrogels. These results also suggest that the CNF–PNIPAAm hydrogels can release drugs on demand.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aixiang Q, Mangeng L, Qunfeng L, Ping Z (2007) Synthesis and characterization of thermo-sensitive poly(N-isopropylacrylamide) hydrogel with fast response rate. Front Chem China 2:135–139CrossRef Aixiang Q, Mangeng L, Qunfeng L, Ping Z (2007) Synthesis and characterization of thermo-sensitive poly(N-isopropylacrylamide) hydrogel with fast response rate. Front Chem China 2:135–139CrossRef
go back to reference Azetsu A, Koga H, Isogai A, Kitaoka T (2011) Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers. Catalyst 1:83–96CrossRef Azetsu A, Koga H, Isogai A, Kitaoka T (2011) Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers. Catalyst 1:83–96CrossRef
go back to reference Barazzouk S, Daneault C (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493CrossRef Barazzouk S, Daneault C (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493CrossRef
go back to reference Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRef Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRef
go back to reference Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRef Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRef
go back to reference Cha RT, He ZB, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718CrossRef Cha RT, He ZB, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718CrossRef
go back to reference Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93:207–215CrossRef Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93:207–215CrossRef
go back to reference Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14:3338–3345CrossRef Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14:3338–3345CrossRef
go back to reference Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500CrossRef Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500CrossRef
go back to reference Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal and mechanical studies. Biomacromol 13:2188–2194CrossRef Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal and mechanical studies. Biomacromol 13:2188–2194CrossRef
go back to reference Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef
go back to reference Haqani M, Roghani-Mamaqani H, Salami-Kalajahi M (2017) Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition–fragmentation chain transfer polymerization. Cellulose 24:2241–2254CrossRef Haqani M, Roghani-Mamaqani H, Salami-Kalajahi M (2017) Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition–fragmentation chain transfer polymerization. Cellulose 24:2241–2254CrossRef
go back to reference Hebeish A, Farag S, Sharaf S, Shaheen ThI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166CrossRef Hebeish A, Farag S, Sharaf S, Shaheen ThI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166CrossRef
go back to reference Hebeish A, Farag S, Sharaf S, Shaheen ThI (2015) Radically new cellulose nanocomposite hydrogels: temperature and pH responsive characters. Carbohydr Polym 81:356–361 Hebeish A, Farag S, Sharaf S, Shaheen ThI (2015) Radically new cellulose nanocomposite hydrogels: temperature and pH responsive characters. Carbohydr Polym 81:356–361
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef
go back to reference Jiang Y, Wu Y, Huo Y (2015) Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. J Biomater Sci Polym Ed 26:917–930CrossRef Jiang Y, Wu Y, Huo Y (2015) Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. J Biomater Sci Polym Ed 26:917–930CrossRef
go back to reference Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580CrossRef Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580CrossRef
go back to reference Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef
go back to reference Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20CrossRef Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20CrossRef
go back to reference Lee KY, Aitomaki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matric composites. Compos Sci Technol 105:15–27CrossRef Lee KY, Aitomaki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matric composites. Compos Sci Technol 105:15–27CrossRef
go back to reference Liu HL, Liu MZ, Ma LW, Chen J (2009) Thermo- and pH-sensitive comb-type grafted poly(N,N-diethyacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Eur Polym J 45:2060–2067CrossRef Liu HL, Liu MZ, Ma LW, Chen J (2009) Thermo- and pH-sensitive comb-type grafted poly(N,N-diethyacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Eur Polym J 45:2060–2067CrossRef
go back to reference Masruchin N, Park BD (2015) Manipulation of surface carboxyl content on TEMPO-oxidized cellulose fibrils. J Korean Wood Sci Technol 43:613–627CrossRef Masruchin N, Park BD (2015) Manipulation of surface carboxyl content on TEMPO-oxidized cellulose fibrils. J Korean Wood Sci Technol 43:613–627CrossRef
go back to reference Masruchin N, Park BD, Causin V (2015a) Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. J Ind Eng Chem 29:265–272CrossRef Masruchin N, Park BD, Causin V (2015a) Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. J Ind Eng Chem 29:265–272CrossRef
go back to reference Masruchin N, Park BD, Causin V, Um IC (2015b) Characteristic of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22:1993–2010CrossRef Masruchin N, Park BD, Causin V, Um IC (2015b) Characteristic of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22:1993–2010CrossRef
go back to reference Peng Y, Gardner DJ, Hang Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef Peng Y, Gardner DJ, Hang Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef
go back to reference Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef
go back to reference Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20:2393–2402CrossRef Sanna R, Fortunati E, Alzari V, Nuvoli D, Terenzi A, Casula MF, Kenny JM, Mariani A (2013) Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20:2393–2402CrossRef
go back to reference Santos JR, Alves NM, Mano JF (2010) New thermo-responsive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym 25:169–184CrossRef Santos JR, Alves NM, Mano JF (2010) New thermo-responsive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym 25:169–184CrossRef
go back to reference Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366CrossRef Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366CrossRef
go back to reference Sun XF, Ye Q, Jing ZX, Li Y (2014) Preparation of hemicelluloses-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym Compos 35:45–52CrossRef Sun XF, Ye Q, Jing ZX, Li Y (2014) Preparation of hemicelluloses-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym Compos 35:45–52CrossRef
go back to reference Sun XF, Gan Z, Jing ZX, Wang HH, Wang D, Jin Y (2015) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132:41606CrossRef Sun XF, Gan Z, Jing ZX, Wang HH, Wang D, Jin Y (2015) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132:41606CrossRef
go back to reference Tejado A, Alam MdN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842CrossRef Tejado A, Alam MdN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842CrossRef
go back to reference Wang J, Zhou XS, Xiao HN (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754CrossRef Wang J, Zhou XS, Xiao HN (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754CrossRef
go back to reference Wei J, Chen Y, Liu H, Du C, Yu H, Ru J, Zhou Z (2016a) Effect of surface charge content in the TEMPO-oxidized cellulose nanofibers on morphologies and properties of poly(N-isopropylacrylamide)-based composite hydrogels. Ind Crops Prod 92:227–235CrossRef Wei J, Chen Y, Liu H, Du C, Yu H, Ru J, Zhou Z (2016a) Effect of surface charge content in the TEMPO-oxidized cellulose nanofibers on morphologies and properties of poly(N-isopropylacrylamide)-based composite hydrogels. Ind Crops Prod 92:227–235CrossRef
go back to reference Wei J, Chen Y, Liu H, Du C, Yu H, Zhou Z (2016b) Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Carbohydr Polym 147:201–207CrossRef Wei J, Chen Y, Liu H, Du C, Yu H, Zhou Z (2016b) Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Carbohydr Polym 147:201–207CrossRef
go back to reference Xiao XC (2007) Effect of the initiator on thermosensitive rate of poly(N-isopropylacrylamide) hydrogels. eXPRESS Polym Lett 4:232–235CrossRef Xiao XC (2007) Effect of the initiator on thermosensitive rate of poly(N-isopropylacrylamide) hydrogels. eXPRESS Polym Lett 4:232–235CrossRef
go back to reference Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef
go back to reference Zhang ZX, Zhuo RX (2000) Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property. J Colloid Interface Sci 223:311–313CrossRef Zhang ZX, Zhuo RX (2000) Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property. J Colloid Interface Sci 223:311–313CrossRef
go back to reference Zhang ZX, Wu DQ, Chu CC (2003) Effect of the crosslinking level on the properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. J Polym Sci Part B Polym Phys 41:582–593CrossRef Zhang ZX, Wu DQ, Chu CC (2003) Effect of the crosslinking level on the properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. J Polym Sci Part B Polym Phys 41:582–593CrossRef
go back to reference Zhang ZX, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805CrossRef Zhang ZX, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805CrossRef
go back to reference Zhang ZX, Xu XD, Cheng SX, Zhuo RX (2008) Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4:385–391CrossRef Zhang ZX, Xu XD, Cheng SX, Zhuo RX (2008) Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4:385–391CrossRef
go back to reference Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425CrossRef Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425CrossRef
go back to reference Zhang H, Yang M, Luan Q, Tang H, Huang F, Xiang X, Yang C, Bao Y (2017) Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. J Agric Food Chem 65:3785–3791CrossRef Zhang H, Yang M, Luan Q, Tang H, Huang F, Xiang X, Yang C, Bao Y (2017) Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. J Agric Food Chem 65:3785–3791CrossRef
Metadata
Title
Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release
Authors
Nanang Masruchin
Byung-Dae Park
Valerio Causin
Publication date
20-11-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1585-2

Other articles of this Issue 1/2018

Cellulose 1/2018 Go to the issue