Skip to main content
Top
Published in: Cellulose 1/2018

02-11-2017 | Original Paper

Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem

Authors: R. H. Fitri Faradilla, George Lee, Justine Roberts, Penny Martens, Martina Stenzel, Jayashree Arcot

Published in: Cellulose | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Banana pseudo-stems, as agricultural waste, are a potential source of ecofriendly nanocellulose-based biodegradable plastic. In this research, effect of glycerol as a plasticiser and nanoclay (NC), and graphene oxide (GO) as nanofillers on the banana pseudo-stem nanocellulose film mechanical, morphological, chemical, thermal, and barrier properties were studied extensively. NC and GO were found to be able to improve the tensile strength of the films but not their elasticity. These nano-fillers also increased the contact angle of the films. On the other hand, glycerol, which acted as a plasticiser, increased the elasticity of the films, but reduced the thermal stability, tensile strength, and contact angle. Synergetic effects were observed when nanofillers and glycerol were combined; both tensile strength and elasticity were improved and the contact angle of the films was significantly higher than films that only contained nanofillers. Concentration of plasticiser had significant effect on the film barrier properties. The water vapor permeability was positively correlated to the glycerol concentration. In contrast, oxygen permeability decreased as increase in glycerol concentration. These results strongly indicate that the properties of the banana pseudo-stem nanocellulose film could be engineered by modifying the type and concentration of added additives. This finding also provides fundamental knowledge and strategy options to further improve nanocellulose based bioplastic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abraham E et al (2011a) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475CrossRef Abraham E et al (2011a) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475CrossRef
go back to reference Abraham E et al (2011b) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475CrossRef Abraham E et al (2011b) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475CrossRef
go back to reference Anyasi TA, Jideani AI, Mchau GR (2013) Functional properties and postharvest utilization of commercial and noncommercial banana cultivars. Compr Rev Food Sci Food Saf 12(5):509–522CrossRef Anyasi TA, Jideani AI, Mchau GR (2013) Functional properties and postharvest utilization of commercial and noncommercial banana cultivars. Compr Rev Food Sci Food Saf 12(5):509–522CrossRef
go back to reference ASTM International (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken ASTM International (2012) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken
go back to reference Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4(20):6622–6628CrossRef Aulin C, Salazar-Alvarez G, Lindstrom T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4(20):6622–6628CrossRef
go back to reference Ball R, McIntosh AC, Brindley J (2004) Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust Theory Model 8(2):281–291CrossRef Ball R, McIntosh AC, Brindley J (2004) Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust Theory Model 8(2):281–291CrossRef
go back to reference Barreto A et al (2010) Chemically modified banana fiber: structure, dielectrical properties and biodegradability. J Polym Environ 18(4):523–531CrossRef Barreto A et al (2010) Chemically modified banana fiber: structure, dielectrical properties and biodegradability. J Polym Environ 18(4):523–531CrossRef
go back to reference Chan CH et al (2015) Low filler content cellulose nanocrystal and graphene oxide reinforced polylactic acid film composites. Polym Res J 9(1):165–177 Chan CH et al (2015) Low filler content cellulose nanocrystal and graphene oxide reinforced polylactic acid film composites. Polym Res J 9(1):165–177
go back to reference Cherian BM et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56(14):5617–5627CrossRef Cherian BM et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56(14):5617–5627CrossRef
go back to reference de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24CrossRef de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1):8–24CrossRef
go back to reference Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRef Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRef
go back to reference Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090CrossRef Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090CrossRef
go back to reference Dehnad D et al (2014) Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydr Polym 105:222–228CrossRef Dehnad D et al (2014) Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydr Polym 105:222–228CrossRef
go back to reference Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef
go back to reference Elanthikkal S et al (2012) Barrier properties of poly (ethylene-co-vinyl acetate)/cellulose composite membranes. Polym Eng Sci 52(10):2140–2146CrossRef Elanthikkal S et al (2012) Barrier properties of poly (ethylene-co-vinyl acetate)/cellulose composite membranes. Polym Eng Sci 52(10):2140–2146CrossRef
go back to reference Faradilla RF et al (2017) Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydr Polym 174:1156–1163CrossRef Faradilla RF et al (2017) Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydr Polym 174:1156–1163CrossRef
go back to reference Ferfera-Harrar H, Dairi N (2014) Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iran Polym J 23(12):917–931CrossRef Ferfera-Harrar H, Dairi N (2014) Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iran Polym J 23(12):917–931CrossRef
go back to reference Ghaderi M et al (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65CrossRef Ghaderi M et al (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65CrossRef
go back to reference Han D et al (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83(2):966–972CrossRef Han D et al (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83(2):966–972CrossRef
go back to reference Hassan-Nejad M et al (2009) Bio-based nanocomposites of cellulose acetate and nano-clay with superior mechanical properties. Macromol Symposia 280(1):123–129CrossRef Hassan-Nejad M et al (2009) Bio-based nanocomposites of cellulose acetate and nano-clay with superior mechanical properties. Macromol Symposia 280(1):123–129CrossRef
go back to reference Hazarika A, Maji TK (2015) Ultraviolet resistance and other physical properties of softwood polymer nanocomposites reinforced with ZnO nanoparticles and nanoclay. Wood Mater Sci Eng 12:24–39CrossRef Hazarika A, Maji TK (2015) Ultraviolet resistance and other physical properties of softwood polymer nanocomposites reinforced with ZnO nanoparticles and nanoclay. Wood Mater Sci Eng 12:24–39CrossRef
go back to reference Hetzer M, De Kee D (2008) Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem Eng Res Des 86(10):1083–1093CrossRef Hetzer M, De Kee D (2008) Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem Eng Res Des 86(10):1083–1093CrossRef
go back to reference Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45(3):885–892CrossRef Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45(3):885–892CrossRef
go back to reference Jin Z et al (2012) Effects of plasticization conditions on the structures and properties of cellulose packaging films from ionic liquid [BMIM] Cl. J Appl Polym Sci 125(1):704–709CrossRef Jin Z et al (2012) Effects of plasticization conditions on the structures and properties of cellulose packaging films from ionic liquid [BMIM] Cl. J Appl Polym Sci 125(1):704–709CrossRef
go back to reference Khan RA et al (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58(13):7878–7885CrossRef Khan RA et al (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58(13):7878–7885CrossRef
go back to reference Lee S-H, Shiraishi N (2001) Plasticization of cellulose diacetate by reaction with maleic anhydride, glycerol, and citrate esters during melt processing. J Appl Polym Sci 81(1):243–250CrossRef Lee S-H, Shiraishi N (2001) Plasticization of cellulose diacetate by reaction with maleic anhydride, glycerol, and citrate esters during melt processing. J Appl Polym Sci 81(1):243–250CrossRef
go back to reference Li K et al (2010) Analysis of the chemical composition and morphological structure of banana psudo-stem. BioResources 5(2):576–585 Li K et al (2010) Analysis of the chemical composition and morphological structure of banana psudo-stem. BioResources 5(2):576–585
go back to reference Li Y et al (2015a) Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Mater 7:e150CrossRef Li Y et al (2015a) Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Mater 7:e150CrossRef
go back to reference Li W et al (2015b) Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction. Carbohydr Polym 132:513–519CrossRef Li W et al (2015b) Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction. Carbohydr Polym 132:513–519CrossRef
go back to reference Lieberman ER, Gilbert SG (1973) Gas permeation of collagen films as affected by cross-linkage, moisture, and plasticizer content. J Polym Sci Polym Symposia 41(1):33–43CrossRef Lieberman ER, Gilbert SG (1973) Gas permeation of collagen films as affected by cross-linkage, moisture, and plasticizer content. J Polym Sci Polym Symposia 41(1):33–43CrossRef
go back to reference Lin J et al (2014) Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr Polym 109:35–43CrossRef Lin J et al (2014) Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr Polym 109:35–43CrossRef
go back to reference Luong ND et al (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21(36):13991–13998CrossRef Luong ND et al (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21(36):13991–13998CrossRef
go back to reference Malho J-M et al (2012) Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromol 13(4):1093–1099CrossRef Malho J-M et al (2012) Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromol 13(4):1093–1099CrossRef
go back to reference Mali S et al (2005) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym 60(3):283–289CrossRef Mali S et al (2005) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym 60(3):283–289CrossRef
go back to reference Meriçer Ç et al (2016) Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Ind Crops Prod 93:235–243CrossRef Meriçer Ç et al (2016) Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Ind Crops Prod 93:235–243CrossRef
go back to reference Neelamana IK, Thomas S, Parameswaranpillai J (2013) Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J Appl Polym Sci 130(2):1239–1246CrossRef Neelamana IK, Thomas S, Parameswaranpillai J (2013) Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J Appl Polym Sci 130(2):1239–1246CrossRef
go back to reference O’Sullivan A (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRef O’Sullivan A (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRef
go back to reference Padam BS et al (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51(12):3527–3545CrossRef Padam BS et al (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51(12):3527–3545CrossRef
go back to reference Park HJ, Chinnan MS (1995) Gas and water vapor barrier properties of edible films from protein and cellulosic materials. J Food Eng 25(4):497–507CrossRef Park HJ, Chinnan MS (1995) Gas and water vapor barrier properties of edible films from protein and cellulosic materials. J Food Eng 25(4):497–507CrossRef
go back to reference Park HJ et al (1993) Permeability and mechanical properties of cellulose-based edible films. J Food Sci 58(6):1361–1364CrossRef Park HJ et al (1993) Permeability and mechanical properties of cellulose-based edible films. J Food Sci 58(6):1361–1364CrossRef
go back to reference Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRef Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204CrossRef
go back to reference Pelissari FM, do Amaral Sobral PJ, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21(1):417–432CrossRef Pelissari FM, do Amaral Sobral PJ, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21(1):417–432CrossRef
go back to reference Peng H et al (2012) Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C 116(30):16294–16299CrossRef Peng H et al (2012) Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C 116(30):16294–16299CrossRef
go back to reference Rachtanapun P, Rattanapanone N (2011) Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra. J Appl Polym Sci 122(5):3218–3226CrossRef Rachtanapun P, Rattanapanone N (2011) Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra. J Appl Polym Sci 122(5):3218–3226CrossRef
go back to reference Saberi B et al (2016) Mechanical and physical properties of pea starch edible films in the presence of glycerol. J Food Process Preserv 40(6):1339–1351CrossRef Saberi B et al (2016) Mechanical and physical properties of pea starch edible films in the presence of glycerol. J Food Process Preserv 40(6):1339–1351CrossRef
go back to reference Shahabi-Ghahfarrokhi I et al (2015) Green bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial residues. Int J Biol Macromol 77:85–91CrossRef Shahabi-Ghahfarrokhi I et al (2015) Green bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial residues. Int J Biol Macromol 77:85–91CrossRef
go back to reference Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRef Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRef
go back to reference Shantha HS, Sidappa GS (1970) Physicochemica nature of banana pseudostem starch. J Food Sci 35:72–74CrossRef Shantha HS, Sidappa GS (1970) Physicochemica nature of banana pseudostem starch. J Food Sci 35:72–74CrossRef
go back to reference Shao W et al (2016) Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances. Carbohydr Polym 138:166–171CrossRef Shao W et al (2016) Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances. Carbohydr Polym 138:166–171CrossRef
go back to reference Siracusa V et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRef Siracusa V et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRef
go back to reference Spoljaric S et al (2014) Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties. Polym Compos 35(6):1117–1131 Spoljaric S et al (2014) Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties. Polym Compos 35(6):1117–1131
go back to reference Spoljaric S et al (2015) Ductile nanocellulose-based films with high stretchability and tear resistance. Eur Polym J 69:328–340CrossRef Spoljaric S et al (2015) Ductile nanocellulose-based films with high stretchability and tear resistance. Eur Polym J 69:328–340CrossRef
go back to reference Vieira MGA et al (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263CrossRef Vieira MGA et al (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263CrossRef
go back to reference Vieira JG et al (2012) Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polímeros 22:80–87CrossRef Vieira JG et al (2012) Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polímeros 22:80–87CrossRef
go back to reference Wan J et al (2015) Optimization of instant edible films based on dietary fiber processed with dynamic high pressure microfluidization for barrier properties and water solubility. LWT Food Sci Technol 60(1):603–608CrossRef Wan J et al (2015) Optimization of instant edible films based on dietary fiber processed with dynamic high pressure microfluidization for barrier properties and water solubility. LWT Food Sci Technol 60(1):603–608CrossRef
go back to reference Wellisch E et al (1960) Interaction of cellulose with small molecules. glycerol and ethylene carbonate. J Appl Polym Sci 3(9):331–337CrossRef Wellisch E et al (1960) Interaction of cellulose with small molecules. glycerol and ethylene carbonate. J Appl Polym Sci 3(9):331–337CrossRef
go back to reference Wu C-N et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13(6):1927–1932CrossRef Wu C-N et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13(6):1927–1932CrossRef
go back to reference Wu C-N et al (2014) Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets. ACS Appl Mater Interfaces 6(15):12707–12712CrossRef Wu C-N et al (2014) Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets. ACS Appl Mater Interfaces 6(15):12707–12712CrossRef
go back to reference Xu S et al (2013) Study on biological materials with the dehydration technology and equipment of banana stems. Appl Mech Mater 327:99–102CrossRef Xu S et al (2013) Study on biological materials with the dehydration technology and equipment of banana stems. Appl Mech Mater 327:99–102CrossRef
go back to reference Xu C et al (2015) Effect of graphene oxide treatment on the properties of cellulose nanofibril films made of banana petiole fibers. BioResources 10:2015 Xu C et al (2015) Effect of graphene oxide treatment on the properties of cellulose nanofibril films made of banana petiole fibers. BioResources 10:2015
go back to reference Yadav M et al (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2):687–698CrossRef Yadav M et al (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2):687–698CrossRef
Metadata
Title
Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem
Authors
R. H. Fitri Faradilla
George Lee
Justine Roberts
Penny Martens
Martina Stenzel
Jayashree Arcot
Publication date
02-11-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1537-x

Other articles of this Issue 1/2018

Cellulose 1/2018 Go to the issue