Skip to main content
Top
Published in: Archive of Applied Mechanics 7/2019

02-01-2019 | Original

Dynamic fracture of a nano-cracked finite exponentially inhomogeneous piezoelectric solid

Authors: Petia Dineva, Marin Marinov, Tsviatko Rangelov

Published in: Archive of Applied Mechanics | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aim of the study is to develop, verify and apply in simulations an efficient non-hypersingular traction boundary integral equation method for solution of anti-plane dynamic problem of a finite exponentially inhomogeneous piezoelectric solid with a nano-crack. The modeling approach is in the frame of continuum mechanics, wave propagation theory, the Gurtin and Murdoch surface elasticity theory and linear fracture mechanics. The simulations reveal the dependence of the stress concentration factors on the electromechanical coupling, on the type and characteristics of the dynamic load, on the position-dependent material properties, on the surface elasticity, on the size effect and on the wave–nanocrack–material gradient interaction in a bounded solid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Haftbaradaran, H., Shodja, H.M.: Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. Int. J. Solids Struct. 46, 2978–2987 (2009)CrossRefMATH Haftbaradaran, H., Shodja, H.M.: Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. Int. J. Solids Struct. 46, 2978–2987 (2009)CrossRefMATH
3.
go back to reference Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28, 926–934 (2009)CrossRefMATH Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28, 926–934 (2009)CrossRefMATH
4.
go back to reference Kim, C.I., Schiavone, P., Ru, C.Q.: The effect of surface elasticity on a mode-III interface crack. Arch. Mech. 63(3), 267–286 (2011)MathSciNetMATH Kim, C.I., Schiavone, P., Ru, C.Q.: The effect of surface elasticity on a mode-III interface crack. Arch. Mech. 63(3), 267–286 (2011)MathSciNetMATH
5.
go back to reference Wang, G.F., Feng, X.Q., Wang, T.J., Gao, W.: Surface effects on the near-tip stresses for Mode-I and Mode-III cracks. ASME J. Appl. Mech. 75, 011001 (2008)CrossRef Wang, G.F., Feng, X.Q., Wang, T.J., Gao, W.: Surface effects on the near-tip stresses for Mode-I and Mode-III cracks. ASME J. Appl. Mech. 75, 011001 (2008)CrossRef
6.
go back to reference Hoagland, R.G., Daw, M.S., Hirth, J.P.: Some aspects of forces and fields in atomic models of crack tips. J. Mater. Res. 6, 2565–2571 (1991)CrossRef Hoagland, R.G., Daw, M.S., Hirth, J.P.: Some aspects of forces and fields in atomic models of crack tips. J. Mater. Res. 6, 2565–2571 (1991)CrossRef
7.
go back to reference Wang, G.F., Li, Y.: Influence of surface tension on mode-I crack tip field. Eng. Fract. Mech. 109, 290–301 (2013)CrossRef Wang, G.F., Li, Y.: Influence of surface tension on mode-I crack tip field. Eng. Fract. Mech. 109, 290–301 (2013)CrossRef
8.
go back to reference Fu, X.L., Wang, G.F., Feng, X.Q.: Effects of surface elasticity on mixed-mode fracture. Int. J. Appl. Mech. 3(3), 435–446 (2011)CrossRef Fu, X.L., Wang, G.F., Feng, X.Q.: Effects of surface elasticity on mixed-mode fracture. Int. J. Appl. Mech. 3(3), 435–446 (2011)CrossRef
9.
go back to reference Fu, X.L., Wang, G.F., Feng, X.Q.: Surface effects on the near-tip stress fields of a mode-II crack. Int. J. Fract. 151, 95–106 (2008)CrossRefMATH Fu, X.L., Wang, G.F., Feng, X.Q.: Surface effects on the near-tip stress fields of a mode-II crack. Int. J. Fract. 151, 95–106 (2008)CrossRefMATH
10.
go back to reference Xu, J.Y., Dong, C.Y.: Surface and interface stress effects on the interaction of nano-inclusions and nano-cracks in an infinite domain under anti-plane shear. Int. J. Mech. Sci. 111–112, 12–23 (2016)CrossRef Xu, J.Y., Dong, C.Y.: Surface and interface stress effects on the interaction of nano-inclusions and nano-cracks in an infinite domain under anti-plane shear. Int. J. Mech. Sci. 111–112, 12–23 (2016)CrossRef
11.
go back to reference Dong, C.Y., Lo, S.H.: An integral equation formulation of anti-plane inhomogeneities. Eng. Anal. Bound. Elem. 37, 1416–1425 (2013)MathSciNetCrossRefMATH Dong, C.Y., Lo, S.H.: An integral equation formulation of anti-plane inhomogeneities. Eng. Anal. Bound. Elem. 37, 1416–1425 (2013)MathSciNetCrossRefMATH
12.
go back to reference Fang, X.Q., Wang, X.H., Zhang, L.L.: Interface effect on the dynamic stress around an elliptical nano-inhomogeneity subjected to anti-plane shear waves. Comput. Mater. Continua 16(3), 229–246 (2010) Fang, X.Q., Wang, X.H., Zhang, L.L.: Interface effect on the dynamic stress around an elliptical nano-inhomogeneity subjected to anti-plane shear waves. Comput. Mater. Continua 16(3), 229–246 (2010)
13.
go back to reference Fang, X.Q., Zhang, L.L., Liu, J.X.: Dynamic stress concentration around two interacting coated nanowires with surface/interface effect. Meccanica 48(2), 287–296 (2013)MathSciNetCrossRefMATH Fang, X.Q., Zhang, L.L., Liu, J.X.: Dynamic stress concentration around two interacting coated nanowires with surface/interface effect. Meccanica 48(2), 287–296 (2013)MathSciNetCrossRefMATH
14.
go back to reference Shodja, H.M., Pahlevania, L.: Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube. Eur. J. Mech. A Solids 32, 21–31 (2012)MathSciNetCrossRefMATH Shodja, H.M., Pahlevania, L.: Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube. Eur. J. Mech. A Solids 32, 21–31 (2012)MathSciNetCrossRefMATH
15.
go back to reference Yang, Q., Liu, J.X., Fang, X.Q.: Dynamic stress in a semi-infinite solid with a cylindrical nano-inhomogeneity considering nanoscale microstructure. Acta Mech. 223, 879–888 (2012)MathSciNetCrossRefMATH Yang, Q., Liu, J.X., Fang, X.Q.: Dynamic stress in a semi-infinite solid with a cylindrical nano-inhomogeneity considering nanoscale microstructure. Acta Mech. 223, 879–888 (2012)MathSciNetCrossRefMATH
16.
go back to reference Zhang, Q.F., Wang, G.F., Schiavone, P.: Diffraction of plane compressional waves by an array of nanosized cylindrical holes. ASME J. Appl. Mech 78, 021003 (2011)CrossRef Zhang, Q.F., Wang, G.F., Schiavone, P.: Diffraction of plane compressional waves by an array of nanosized cylindrical holes. ASME J. Appl. Mech 78, 021003 (2011)CrossRef
17.
go back to reference Xiao, J., Hu, Y., Zhang, F.: A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM-Z. Angew. Math. Mech. 96(5), 633–641 (2016)MathSciNetCrossRef Xiao, J., Hu, Y., Zhang, F.: A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM-Z. Angew. Math. Mech. 96(5), 633–641 (2016)MathSciNetCrossRef
18.
go back to reference Fang, X.Q., Yang, Q., Liu, J.X., Feng, W.J.: Surfaces/interface effect around a piezoelectric nano-particle in a polymer matrix under compressional waves. Appl. Phys. Lett. 100, 151602 (2012a)CrossRef Fang, X.Q., Yang, Q., Liu, J.X., Feng, W.J.: Surfaces/interface effect around a piezoelectric nano-particle in a polymer matrix under compressional waves. Appl. Phys. Lett. 100, 151602 (2012a)CrossRef
19.
go back to reference Fang, X.Q., Liu, J.X., Dou, L.H., Chen, M.Z.: Dynamic strength around two interacting piezoelectric nano-fibers with surfaces/interfaces in solid under electro-elastic wave. Thin Solid Films 520, 3587–3592 (2012b)CrossRef Fang, X.Q., Liu, J.X., Dou, L.H., Chen, M.Z.: Dynamic strength around two interacting piezoelectric nano-fibers with surfaces/interfaces in solid under electro-elastic wave. Thin Solid Films 520, 3587–3592 (2012b)CrossRef
20.
go back to reference Dineva, P., Gross, D., Müller, R., Rangelov, T.: Dynamic Fracture of Piezoelectric Materials. Solutions of Time-Harmonic Problems via BIEM. Solid Mechanics and Its Applications, vol. 212. Springer International Publishing, Cham (2014) Dineva, P., Gross, D., Müller, R., Rangelov, T.: Dynamic Fracture of Piezoelectric Materials. Solutions of Time-Harmonic Problems via BIEM. Solid Mechanics and Its Applications, vol. 212. Springer International Publishing, Cham (2014)
21.
go back to reference Tan, X., Qui, S., He, W., Lei, D.: Functionally graded nano hardmetal materials made by Spark plasma sintering technology. J. Metastable Nanocryst. Mater. 23, 179–182 (2005)CrossRef Tan, X., Qui, S., He, W., Lei, D.: Functionally graded nano hardmetal materials made by Spark plasma sintering technology. J. Metastable Nanocryst. Mater. 23, 179–182 (2005)CrossRef
22.
go back to reference Nejad, M.Z., Hadi, A.: Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler Bernoulli nano-beams. Int. J. Eng. Sci. 106, 1–9 (2016)MathSciNetCrossRefMATH Nejad, M.Z., Hadi, A.: Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler Bernoulli nano-beams. Int. J. Eng. Sci. 106, 1–9 (2016)MathSciNetCrossRefMATH
23.
go back to reference Guo, J., Chen, J., Pan, E.: A three-dimensional size-dependent layered model for simply-supported and functionally graded magnetoelectroelastic plates. Acta Mech. Solida Sin. 31(5), 652–671 (2018)CrossRef Guo, J., Chen, J., Pan, E.: A three-dimensional size-dependent layered model for simply-supported and functionally graded magnetoelectroelastic plates. Acta Mech. Solida Sin. 31(5), 652–671 (2018)CrossRef
24.
go back to reference Rangelov, T., Dineva, P.: Dynamic fracture behavior of a nanocrack in a piezoelectric plane. ZAMM Z. Angew. Math. Mech. 97(11), 1393–1405 (2017)MathSciNet Rangelov, T., Dineva, P.: Dynamic fracture behavior of a nanocrack in a piezoelectric plane. ZAMM Z. Angew. Math. Mech. 97(11), 1393–1405 (2017)MathSciNet
25.
go back to reference Landau, D.L., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)MATH Landau, D.L., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)MATH
26.
go back to reference Davi, G., Milazzo, A.: Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int. J. Solids Struct. 38, 7065–7078 (2001)CrossRefMATH Davi, G., Milazzo, A.: Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int. J. Solids Struct. 38, 7065–7078 (2001)CrossRefMATH
27.
go back to reference Cruse, T.A.: Two-dimensional BIE fracture mechanics analysis. Appl. Math. Model. 2, 287–293 (1978)CrossRefMATH Cruse, T.A.: Two-dimensional BIE fracture mechanics analysis. Appl. Math. Model. 2, 287–293 (1978)CrossRefMATH
28.
go back to reference Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton (1998)MATH Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton (1998)MATH
29.
go back to reference Daros, C.H.: On modelling sh-waves in a class of inhomogeneous anisotropic media via the boundary element method. ZAMM-Z. Angew. Math. Mech. 90, 113–121 (2010)MathSciNetCrossRefMATH Daros, C.H.: On modelling sh-waves in a class of inhomogeneous anisotropic media via the boundary element method. ZAMM-Z. Angew. Math. Mech. 90, 113–121 (2010)MathSciNetCrossRefMATH
30.
go back to reference Rangelov, T., Dineva, P., Gross, D.: Effect of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach. ZAMM-Z. Angew. Math. Mech. 88, 86–99 (2008)MathSciNetCrossRefMATH Rangelov, T., Dineva, P., Gross, D.: Effect of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach. ZAMM-Z. Angew. Math. Mech. 88, 86–99 (2008)MathSciNetCrossRefMATH
31.
go back to reference Manolis, G., Dineva, P., Rangelov, T., Wuttke, F.: Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and its Applications, vol. 240. Springer International Publishing, Cham (2017)CrossRefMATH Manolis, G., Dineva, P., Rangelov, T., Wuttke, F.: Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements. Solid Mechanics and its Applications, vol. 240. Springer International Publishing, Cham (2017)CrossRefMATH
32.
go back to reference Gross, D., Dineva, P., Rangelov, T.: BIEM solution of piezoelectric cracked finite solids under time-harmonic loading. Eng. Anal. Bound. Elem. 31(2), 152–162 (2007)CrossRefMATH Gross, D., Dineva, P., Rangelov, T.: BIEM solution of piezoelectric cracked finite solids under time-harmonic loading. Eng. Anal. Bound. Elem. 31(2), 152–162 (2007)CrossRefMATH
33.
go back to reference Zhang, C., Savidis, A., Zhu, H.: A time domain BIEM for crack analysis in functionally graded materials under impact loading. In: Denda, M. (ed.) Advances in Boundary Element Techniques II, pp. 405–412. Hoggar Press, Geneva (2001) Zhang, C., Savidis, A., Zhu, H.: A time domain BIEM for crack analysis in functionally graded materials under impact loading. In: Denda, M. (ed.) Advances in Boundary Element Techniques II, pp. 405–412. Hoggar Press, Geneva (2001)
34.
go back to reference Zhang, C., Savidis, A., Savidis, G., Zhu, H.: Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comput. Mater. Sci. 26, 167–174 (2003)CrossRef Zhang, C., Savidis, A., Savidis, G., Zhu, H.: Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comput. Mater. Sci. 26, 167–174 (2003)CrossRef
35.
go back to reference Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nanoinhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)CrossRef Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nanoinhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)CrossRef
36.
go back to reference Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)MathSciNetCrossRefMATH Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)MathSciNetCrossRefMATH
37.
go back to reference Rangelov, T., Marinov, M., Dineva, P.: Time-harmonic behaviour of cracked piezoelectric solid by boundary integral equation method. J. Theor. Appl. Mech. 44(1), 51–68 (2014)MathSciNetCrossRefMATH Rangelov, T., Marinov, M., Dineva, P.: Time-harmonic behaviour of cracked piezoelectric solid by boundary integral equation method. J. Theor. Appl. Mech. 44(1), 51–68 (2014)MathSciNetCrossRefMATH
38.
39.
go back to reference Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)MATH Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)MATH
Metadata
Title
Dynamic fracture of a nano-cracked finite exponentially inhomogeneous piezoelectric solid
Authors
Petia Dineva
Marin Marinov
Tsviatko Rangelov
Publication date
02-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 7/2019
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-01505-w

Other articles of this Issue 7/2019

Archive of Applied Mechanics 7/2019 Go to the issue

Premium Partners