Skip to main content
Top
Published in: Cellulose 12/2018

28-09-2018 | Original Paper

Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood

Authors: Haiying Wang, Chuchu Chen, Lu Fang, Suiyi Li, Nuo Chen, Junwu Pang, Dagang Li

Published in: Cellulose | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report on an efficient method for extracting cellulose nanofibers with cellulose II crystal structure that presents a relatively high yield (approximately 82%) after mechanical treatment. Delignification technique plays an important role in the conversion of crystals from cellulose I to cellulose II during the mercerization process and in the subsequent fibrillation of cellulose II nanofibers. Delignified wood pulps (with half of the lignin removed) were treated with 17.5 wt% sodium hydroxide solution to mercerize the cellulose, and then the remaining lignin was further removed to purify the pulps. The resulting pulps were fibrillated by using only one pass through a grinder. X-ray diffraction patterns revealed that the above mercerized pulps were successfully converted into the cellulose II crystal structure. Morphological observation showed that cellulose II nanofibers with a width of approximately 15–90 nm were successfully obtained using the above method. This may have occurred because the remaining half of the lignin in wood pulps partly prevented the interdigitation and aggregation of the cellulose microfibrils during the mercerization process, thus facilitating the subsequent nanofibrillation. However, for the delignified wood pulps (with more than two-thirds of the lignin removed), the microfibrils in the cell wall bound more easily to each other by aggregation during the mercerization process, which may have caused difficulties in the subsequent nanofibrillation.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371CrossRef Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371CrossRef
go back to reference Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737CrossRef Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737CrossRef
go back to reference Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef
go back to reference Chen W, Yu H, Liu Y, Jiang N, Chen P (2010) A method for isolating cellulose nanofibrils from wood and their morphological characteristics. Acta Polym Sin 11:1320–1326CrossRef Chen W, Yu H, Liu Y, Jiang N, Chen P (2010) A method for isolating cellulose nanofibrils from wood and their morphological characteristics. Acta Polym Sin 11:1320–1326CrossRef
go back to reference Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef
go back to reference Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef
go back to reference de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606CrossRef de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606CrossRef
go back to reference Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I -> cellulose II. Cellulose 9:7–18CrossRef Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I -> cellulose II. Cellulose 9:7–18CrossRef
go back to reference Douglass EF, Avci H, Boy R, Rojas OJ, Kotek R (2018) A review of cellulose and cellulose blends for preparation of bio-derived and conventional membranes, nanostructured thin films, and composites. Polym Rev 58:102–163CrossRef Douglass EF, Avci H, Boy R, Rojas OJ, Kotek R (2018) A review of cellulose and cellulose blends for preparation of bio-derived and conventional membranes, nanostructured thin films, and composites. Polym Rev 58:102–163CrossRef
go back to reference Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511CrossRef Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511CrossRef
go back to reference Fink HP, Phillip B (1985) Models of cellulose physical structure from the view point of the cellulose I to cellulose II transition. J Appl Polym Sci 30:3779–3790CrossRef Fink HP, Phillip B (1985) Models of cellulose physical structure from the view point of the cellulose I to cellulose II transition. J Appl Polym Sci 30:3779–3790CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Horikawa Y, Konakahara N, Imai T, Kentaro A, Kobayashi Y, Sugiyama J (2013) The structural changes in crystalline cellulose and effects on enzymatic digestibility. Polym Degrad Stabil 98:2351–2356CrossRef Horikawa Y, Konakahara N, Imai T, Kentaro A, Kobayashi Y, Sugiyama J (2013) The structural changes in crystalline cellulose and effects on enzymatic digestibility. Polym Degrad Stabil 98:2351–2356CrossRef
go back to reference Hubbell CA, Ragauskas AJ (2010) Effect of acid–chlorite delignification on cellulose degree of polymerization. Bioresourc Technol 101:7410–7415CrossRef Hubbell CA, Ragauskas AJ (2010) Effect of acid–chlorite delignification on cellulose degree of polymerization. Bioresourc Technol 101:7410–7415CrossRef
go back to reference Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47–55CrossRef Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47–55CrossRef
go back to reference Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRef Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRef
go back to reference Jin E, Guo JQ, Yang F, Zhu YY, Song JL, Jin YC, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335CrossRef Jin E, Guo JQ, Yang F, Zhu YY, Song JL, Jin YC, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335CrossRef
go back to reference Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393CrossRef Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393CrossRef
go back to reference Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99CrossRef Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99CrossRef
go back to reference Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018CrossRef Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018CrossRef
go back to reference Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9(6):735–739CrossRef Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9(6):735–739CrossRef
go back to reference Liu Y, Chen W, Xia Q, Guo B, Wang Q, Liu S, Liu Y, Li J, Yu H (2017) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10:1692–1700CrossRef Liu Y, Chen W, Xia Q, Guo B, Wang Q, Liu S, Liu Y, Li J, Yu H (2017) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10:1692–1700CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Muhd Julkapli N, Bagheri S (2017) Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Adv Technol 28:1583–1594CrossRef Muhd Julkapli N, Bagheri S (2017) Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Adv Technol 28:1583–1594CrossRef
go back to reference Nagarajan S, Skillen NC, Irvine JTS, Lawton LA, Robertson PKJ (2017) Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renew Sustain Energy Rev 77:182–192CrossRef Nagarajan S, Skillen NC, Irvine JTS, Lawton LA, Robertson PKJ (2017) Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renew Sustain Energy Rev 77:182–192CrossRef
go back to reference Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose triesters. J Polym Sci Part A Polym Chem 33:1647–1651CrossRef Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose triesters. J Polym Sci Part A Polym Chem 33:1647–1651CrossRef
go back to reference Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRef Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRef
go back to reference Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61:254–264CrossRef Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61:254–264CrossRef
go back to reference Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282CrossRef Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282CrossRef
go back to reference Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef
go back to reference Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8CrossRef Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8CrossRef
go back to reference Serizawa T, Kato M, Okura H, Sawada T, Wada M (2016) Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J 48:539–544CrossRef Serizawa T, Kato M, Okura H, Sawada T, Wada M (2016) Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J 48:539–544CrossRef
go back to reference Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng YL (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5:63111–63122CrossRef Sharma S, Nair SS, Zhang Z, Ragauskas AJ, Deng YL (2015) Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Adv 5:63111–63122CrossRef
go back to reference Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4:219–238CrossRef Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4:219–238CrossRef
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Sun R, Tomkinson J, Wang Y, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxideextraction. Polymer 41(7):2647–2656CrossRef Sun R, Tomkinson J, Wang Y, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxideextraction. Polymer 41(7):2647–2656CrossRef
go back to reference Suzuki K, Homma Y, Igarashi Y, Okumura H, Semba T, Nakatsubo F, Yano H (2016) Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins. Cellulose 23:623–635CrossRef Suzuki K, Homma Y, Igarashi Y, Okumura H, Semba T, Nakatsubo F, Yano H (2016) Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins. Cellulose 23:623–635CrossRef
go back to reference Wang H, Li D, Yano H, Abe K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515CrossRef Wang H, Li D, Yano H, Abe K (2014) Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21:1505–1515CrossRef
go back to reference Xia Q, Liu Y, Meng J, Cheng W, Chen W, Liu S, Liu Y, Li J, Yu H (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721CrossRef Xia Q, Liu Y, Meng J, Cheng W, Chen W, Liu S, Liu Y, Li J, Yu H (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721CrossRef
go back to reference Xing L, Gu J, Zhang W, Tu D, Hu C (2018) Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydr Polym 192:184–192CrossRef Xing L, Gu J, Zhang W, Tu D, Hu C (2018) Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydr Polym 192:184–192CrossRef
go back to reference Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRef Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRef
go back to reference Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363CrossRef Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363CrossRef
Metadata
Title
Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood
Authors
Haiying Wang
Chuchu Chen
Lu Fang
Suiyi Li
Nuo Chen
Junwu Pang
Dagang Li
Publication date
28-09-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 12/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2054-2

Other articles of this Issue 12/2018

Cellulose 12/2018 Go to the issue