Skip to main content
Erschienen in: Cellulose 3/2014

01.06.2014 | Original Paper

Preparation of tough cellulose II nanofibers with high thermal stability from wood

verfasst von: Haiying Wang, Dagang Li, Hiroyuki Yano, Kentaro Abe

Erschienen in: Cellulose | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Well-dispersed cellulose II nanofibers with high purity of 92 % and uniform width of 15–40 nm were isolated from wood and compared to cellulose I nanofibers. First, ground wood powder was purified by series of chemical treatments. The resulting purified pulp was treated with 17.5 wt% sodium hydroxide (NaOH) solution to mercerize the cellulose. The mercerized pulp was further mechanically nanofibrillated to isolate the nanofibers. X-ray diffraction patterns revealed that the purified pulp had been transformed into the cellulose II crystal structure after treatment with 17.5 wt% NaOH, and the cellulose II polymorph was retained after nanofibrillation. The cellulose II nanofiber sheet exhibited a decrease in Young’s modulus (8.6 GPa) and an increase in fracture strain (13.6 %) compared to the values for a cellulose I nanofiber sheet (11.8 GPa and 7.5 %, respectively), which translated into improved toughness. The cellulose II nanofiber sheet also showed a very low thermal expansion coefficient of 15.9 ppm/K in the range of 20–150 °C. Thermogravimetric analysis indicated that the cellulose II nanofiber sheet had better thermal stability than the cellulose I nanofiber sheet, which was likely due to the stronger hydrogen bonds in cellulose II crystal structure, as well as the higher purity of the cellulose II nanofibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907–1912CrossRef Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907–1912CrossRef
Zurück zum Zitat Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef
Zurück zum Zitat Alvarez VA, Vazquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi/Sisal fiber composites. Compos Part A 37:1672–1680CrossRef Alvarez VA, Vazquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi/Sisal fiber composites. Compos Part A 37:1672–1680CrossRef
Zurück zum Zitat Arvela PM, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32:175–201CrossRef Arvela PM, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32:175–201CrossRef
Zurück zum Zitat Blackwell J, Kolpak FJ, Gardner KH (1977) Structures of native and regenerated celluloses. ACS Symp Ser 48:42–55CrossRef Blackwell J, Kolpak FJ, Gardner KH (1977) Structures of native and regenerated celluloses. ACS Symp Ser 48:42–55CrossRef
Zurück zum Zitat Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36:333–368CrossRef Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36:333–368CrossRef
Zurück zum Zitat Chen WS, Yu HP, Liu YX, Hai YF, Zhang MX, Chen P (2011a) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef Chen WS, Yu HP, Liu YX, Hai YF, Zhang MX, Chen P (2011a) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRef
Zurück zum Zitat Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef
Zurück zum Zitat Chen HZ, Wang N, Liu LY (2012) Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. J Chem Technol Biotechnol 87:1634–1640CrossRef Chen HZ, Wang N, Liu LY (2012) Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. J Chem Technol Biotechnol 87:1634–1640CrossRef
Zurück zum Zitat de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRef de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRef
Zurück zum Zitat Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18CrossRef Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18CrossRef
Zurück zum Zitat Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Holzforschung 49:505–511CrossRef Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Holzforschung 49:505–511CrossRef
Zurück zum Zitat Fink HP, Phillip B (1985) Models of cellulose physical structure from the view point of the cellulose I → II transition. J Appl Polym Sci 30:3779–3790CrossRef Fink HP, Phillip B (1985) Models of cellulose physical structure from the view point of the cellulose I → II transition. J Appl Polym Sci 30:3779–3790CrossRef
Zurück zum Zitat Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos Part A 37:2213–2220CrossRef Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos Part A 37:2213–2220CrossRef
Zurück zum Zitat Gomes A, Goda K, Ohgi J (2004) Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites. JSME Int J, Ser A 47:541–546CrossRef Gomes A, Goda K, Ohgi J (2004) Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites. JSME Int J, Ser A 47:541–546CrossRef
Zurück zum Zitat Han JQ, Zhou CJ, French AD, Han GP, Wu QL (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781CrossRef Han JQ, Zhou CJ, French AD, Han GP, Wu QL (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781CrossRef
Zurück zum Zitat Hirota M, Tamura N, Saito T, Isogai A (2012) Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation. Cellulose 19:435–442CrossRef Hirota M, Tamura N, Saito T, Isogai A (2012) Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation. Cellulose 19:435–442CrossRef
Zurück zum Zitat Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibers in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38(2):463–468CrossRef Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibers in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38(2):463–468CrossRef
Zurück zum Zitat Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47–55CrossRef Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47–55CrossRef
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef
Zurück zum Zitat Jin ZW, Wang S, Wang JQ, Zhao MX (2012) Effects of plasticization conditions on the structures and properties of cellulose packaging films from ionic liquid [BMIM]Cl. J Appl Polym Sci 125(1):704–709CrossRef Jin ZW, Wang S, Wang JQ, Zhao MX (2012) Effects of plasticization conditions on the structures and properties of cellulose packaging films from ionic liquid [BMIM]Cl. J Appl Polym Sci 125(1):704–709CrossRef
Zurück zum Zitat Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23CrossRef Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23CrossRef
Zurück zum Zitat Kim HJ, Eom YG (2001) Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites. J Korean Wood Sci Technol 29:59–67 Kim HJ, Eom YG (2001) Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites. J Korean Wood Sci Technol 29:59–67
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
Zurück zum Zitat Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRef Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRef
Zurück zum Zitat Murase H, Sugiyama J, Saiki H, Harada H (1988) The effect of lignin on mercerization of cellulose in wood: an electron diffraction study on the transformation from cellulose I to cellulose II. Mokuzai Gakkaishi 34(12):965–972 Murase H, Sugiyama J, Saiki H, Harada H (1988) The effect of lignin on mercerization of cellulose in wood: an electron diffraction study on the transformation from cellulose I to cellulose II. Mokuzai Gakkaishi 34(12):965–972
Zurück zum Zitat Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRef Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRef
Zurück zum Zitat Nakano T (1989) Plasticization of wood by alkali treatment: relationship between plasticization and ultrastructure. Mokuzai Gakkaishi 35(5):431–437 Nakano T (1989) Plasticization of wood by alkali treatment: relationship between plasticization and ultrastructure. Mokuzai Gakkaishi 35(5):431–437
Zurück zum Zitat Nishimura H, Sarko A (1987) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866CrossRef Nishimura H, Sarko A (1987) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866CrossRef
Zurück zum Zitat Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part A: Polym Chem 33:1647–1651CrossRef Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part A: Polym Chem 33:1647–1651CrossRef
Zurück zum Zitat Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 20:1–4 Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 20:1–4
Zurück zum Zitat O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
Zurück zum Zitat Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342–1347CrossRef Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342–1347CrossRef
Zurück zum Zitat Okano T, Sarko A (1985) Mercerization of cellulose. II. alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRef Okano T, Sarko A (1985) Mercerization of cellulose. II. alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRef
Zurück zum Zitat Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282CrossRef Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282CrossRef
Zurück zum Zitat Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725CrossRef Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725CrossRef
Zurück zum Zitat Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef
Zurück zum Zitat Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose IIla. Macromolecules 7:486–494CrossRef Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose IIla. Macromolecules 7:486–494CrossRef
Zurück zum Zitat Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef
Zurück zum Zitat Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4(2):219–238CrossRef Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4(2):219–238CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
Zurück zum Zitat Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
Zurück zum Zitat Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRef Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRef
Metadaten
Titel
Preparation of tough cellulose II nanofibers with high thermal stability from wood
verfasst von
Haiying Wang
Dagang Li
Hiroyuki Yano
Kentaro Abe
Publikationsdatum
01.06.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0222-6

Weitere Artikel der Ausgabe 3/2014

Cellulose 3/2014 Zur Ausgabe