Skip to main content
Erschienen in: Cellulose 6/2012

01.12.2012 | Original Paper

Cellulose nanofiber-based hydrogels with high mechanical strength

verfasst von: Kentaro Abe, Hiroyuki Yano

Erschienen in: Cellulose | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The preparation of high-strength hydrogels from plant-based cellulose nanofibers by simple alkaline treatment is described herein. We isolated the cellulose nanofibers with a uniform width of approximately 15 nm from wood and we prepared two types of hydrogel sheet with different crystal forms (celluloses I and II) in 9 and 15 wt% aqueous sodium hydroxide solutions. Both of the hydrogels exhibited high tensile properties because of the crystalline network in the gels. Especially, the nanofiber hydrogel with a cellulose II crystal structure with the swelling degree of 13.4 achieved a Young’s modulus and tensile strength in excess of 35 and 5 MPa respectively, because it had a continuous and strong nano-network formed via the interdigitation of the neighboring nanofibers during mercerization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023CrossRef Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023CrossRef
Zurück zum Zitat Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17:271–277CrossRef Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17:271–277CrossRef
Zurück zum Zitat Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737CrossRef Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737CrossRef
Zurück zum Zitat Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef
Zurück zum Zitat Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. Chem Sus Chem 1:149–154 Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. Chem Sus Chem 1:149–154
Zurück zum Zitat Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydra Polym 84:40–53CrossRef Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydra Polym 84:40–53CrossRef
Zurück zum Zitat Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Contr Release 119:5–24CrossRef Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Contr Release 119:5–24CrossRef
Zurück zum Zitat Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460CrossRef Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460CrossRef
Zurück zum Zitat Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
Zurück zum Zitat Hagiwara Y, Ananda Putra A, Kakugo A, Furukawa H, Gon JP (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17:93–101CrossRef Hagiwara Y, Ananda Putra A, Kakugo A, Furukawa H, Gon JP (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17:93–101CrossRef
Zurück zum Zitat Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711–719CrossRef Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711–719CrossRef
Zurück zum Zitat Nakano T, Sugiyama J, Norimoto M (2000) Contraction force and transformation of microfibril with aqueous sodium hydroxide solution. Holzforschung 54:315–320CrossRef Nakano T, Sugiyama J, Norimoto M (2000) Contraction force and transformation of microfibril with aqueous sodium hydroxide solution. Holzforschung 54:315–320CrossRef
Zurück zum Zitat Nakayama A, Kakugo A, Gon JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Func Mater 14:1124–1128CrossRef Nakayama A, Kakugo A, Gon JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Func Mater 14:1124–1128CrossRef
Zurück zum Zitat Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part A: Polym Chem 33:1647–1651 Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part A: Polym Chem 33:1647–1651
Zurück zum Zitat Okano T, Sarko A (1985) Mercerization of cellulose. II. alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRef Okano T, Sarko A (1985) Mercerization of cellulose. II. alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRef
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
Zurück zum Zitat Saito T, Uematsu T, Kimura S, Enomaea T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef Saito T, Uematsu T, Kimura S, Enomaea T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef
Zurück zum Zitat Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Towards a systems approach to understanding plant cell walls. Science 306:2206–2211CrossRef Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Towards a systems approach to understanding plant cell walls. Science 306:2206–2211CrossRef
Zurück zum Zitat Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548CrossRef Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548CrossRef
Zurück zum Zitat Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRef Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRef
Metadaten
Titel
Cellulose nanofiber-based hydrogels with high mechanical strength
verfasst von
Kentaro Abe
Hiroyuki Yano
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2012
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9784-3

Weitere Artikel der Ausgabe 6/2012

Cellulose 6/2012 Zur Ausgabe