Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2022

28-01-2022 | Technical Article

Effect of Hydrogen on Microstructure and Mechanical Behavior of High-Strength Bainitic Steel in Marine Application

Authors: Zhen Zhang, Anzhe Wang, Wei Zhao, Zhixin Ba, Zhengfei Hu, Shan Gao, Yuping Li

Published in: Journal of Materials Engineering and Performance | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties and microstructural evolution of high-strength bainitic steel before and after hydrogen charging were investigated by nanoindentation creep tests and multiscale morphology observations. The results showed that hydrogen charging led to higher local nanoindentation hardness and lower stress exponent of the steel. The elongation of the material decreased, and the susceptibility to hydrogen embrittlement increased after charging. SEM observation showed that the presence of hydrogen changes the material’s fracture characteristics from ductile to a mixture of ductile and transgranular cleavage fracture. TEM and SADP analysis indicated that the energetically favorable and stress-promoted hydrogen induced the enhanced dislocation activity in the lath, and the hydrogen might accumulate at the interface between the harder M-A and the softer substrate, as well as at GB. The influence of hydrogen on material properties is caused by the interaction of hydrogen-induced local hardening and hydrogen-induced cracking.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li and X.G. Li, Effect of Hydrogen-Induced Plasticity on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Soil Environments, Mater. Sci. Eng. A, 2016, 658, p 348–354.CrossRef Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li and X.G. Li, Effect of Hydrogen-Induced Plasticity on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Soil Environments, Mater. Sci. Eng. A, 2016, 658, p 348–354.CrossRef
2.
go back to reference F.L. Ma, J.L. Li, Z.X. Zeng and Y.M. Gao, Tribocorrosion Behavior in Artificial Seawater and Anti-microbiologically Influenced Corrosion Properties of TiSiN-Cu Coating on F690 Steel, J Mater. Sci. Tech., 2019, 35(03), p 448–459.CrossRef F.L. Ma, J.L. Li, Z.X. Zeng and Y.M. Gao, Tribocorrosion Behavior in Artificial Seawater and Anti-microbiologically Influenced Corrosion Properties of TiSiN-Cu Coating on F690 Steel, J Mater. Sci. Tech., 2019, 35(03), p 448–459.CrossRef
3.
go back to reference I.J. Park, K.H. Jeong, J.G. Jung, S.L. Chong and Y.K. Lee, Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-added Fe-18Mn-0.6C Twinning-Induced Plasticity Steels, Int. J Hydrogen Energy, 2012, 37, p 9925–9932.CrossRef I.J. Park, K.H. Jeong, J.G. Jung, S.L. Chong and Y.K. Lee, Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-added Fe-18Mn-0.6C Twinning-Induced Plasticity Steels, Int. J Hydrogen Energy, 2012, 37, p 9925–9932.CrossRef
4.
go back to reference S. Feliu and M. Morcillo, The Prediction of Atmospheric Corrosion from Meteorological and Pollution Parameters, Corros. Sci, 2013, 34(3), p 403–414.CrossRef S. Feliu and M. Morcillo, The Prediction of Atmospheric Corrosion from Meteorological and Pollution Parameters, Corros. Sci, 2013, 34(3), p 403–414.CrossRef
5.
go back to reference H.C. Ma, C.W. Du, Z.Y. Liu and X.G. Li, Effect of SO2 Content on SCC Behavior of E690 High-Strength Steel in SO2-Polluted Marine Atmosphere, Ocean Eng., 2018, 164, p 256–262.CrossRef H.C. Ma, C.W. Du, Z.Y. Liu and X.G. Li, Effect of SO2 Content on SCC Behavior of E690 High-Strength Steel in SO2-Polluted Marine Atmosphere, Ocean Eng., 2018, 164, p 256–262.CrossRef
6.
go back to reference H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li and D.W. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corro. Sci., 2018, 144, p 145–162.CrossRef H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li and D.W. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corro. Sci., 2018, 144, p 145–162.CrossRef
7.
go back to reference T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun and X.G. Li, Effects of Cathodic Polarization on Corrosion Fatigue Life of E690 Steel in Simulated Seawater, Int. J Fatigue, 2018, 110, p 105–114.CrossRef T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun and X.G. Li, Effects of Cathodic Polarization on Corrosion Fatigue Life of E690 Steel in Simulated Seawater, Int. J Fatigue, 2018, 110, p 105–114.CrossRef
8.
go back to reference H.C. Ma, L.H. Chen, J.B. Zhao, Y.H. Huang and X.G. Li, Effect of Prior Austenite Grain Boundaries on Corrosion Fatigue Behaviors of E690 High Strength Low Alloy Steel in Simulated Marine Atmosphere, Mater. Sci. Eng. A, 2020, 773, p 138884.CrossRef H.C. Ma, L.H. Chen, J.B. Zhao, Y.H. Huang and X.G. Li, Effect of Prior Austenite Grain Boundaries on Corrosion Fatigue Behaviors of E690 High Strength Low Alloy Steel in Simulated Marine Atmosphere, Mater. Sci. Eng. A, 2020, 773, p 138884.CrossRef
9.
go back to reference C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Hydrogen Induced Cold Cracking of Creep Resistant Ferritic P91 Steel for Different Diffusible Hydrogen Levels in Deposited Metal, Int. J. Hydrogen Energ., 2016, 41(39), p 17695–17712.CrossRef C. Pandey, N. Saini, M.M. Mahapatra and P. Kumar, Hydrogen Induced Cold Cracking of Creep Resistant Ferritic P91 Steel for Different Diffusible Hydrogen Levels in Deposited Metal, Int. J. Hydrogen Energ., 2016, 41(39), p 17695–17712.CrossRef
10.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini and A. Srivastava, Microstructure and Mechanical Property Relationship for Different Heat Treatment and Hydrogen Level in Multi-Pass Welded P91 Steel Joint, J. Manuf. Process, 2017, 28, p 220–234.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini and A. Srivastava, Microstructure and Mechanical Property Relationship for Different Heat Treatment and Hydrogen Level in Multi-Pass Welded P91 Steel Joint, J. Manuf. Process, 2017, 28, p 220–234.CrossRef
11.
go back to reference A. Barnoush and H. Vehoff, In situ Electrochemical Nanoindentation: A Technique for Local Examination of Hydrogen Embrittlement, Corros. Sci., 2008, 50, p 259–267.CrossRef A. Barnoush and H. Vehoff, In situ Electrochemical Nanoindentation: A Technique for Local Examination of Hydrogen Embrittlement, Corros. Sci., 2008, 50, p 259–267.CrossRef
12.
go back to reference L.W. Wang, J.M. Liang, H. Li, L.J. Cheng and Z.Y. Cui, Quantitative Study of the Corrosion Evolution and Stress Corrosion Cracking of High Strength Aluminum Alloys in Solution and Thin Electrolyte Layer Containing Cl-, Corros. Sci, 2021, 178, p 109076.CrossRef L.W. Wang, J.M. Liang, H. Li, L.J. Cheng and Z.Y. Cui, Quantitative Study of the Corrosion Evolution and Stress Corrosion Cracking of High Strength Aluminum Alloys in Solution and Thin Electrolyte Layer Containing Cl-, Corros. Sci, 2021, 178, p 109076.CrossRef
13.
go back to reference L. Zhang, B. An, S. Fukuyama and K. Yokogawa, Hydrogen Effects on Localized Plasticity in SUS310S Stainless Steel Investigated by Nanoindentation and Atomic Force Microscopy, Jpn. J Appl. Phys., 2009, 48, p 8.CrossRef L. Zhang, B. An, S. Fukuyama and K. Yokogawa, Hydrogen Effects on Localized Plasticity in SUS310S Stainless Steel Investigated by Nanoindentation and Atomic Force Microscopy, Jpn. J Appl. Phys., 2009, 48, p 8.CrossRef
14.
go back to reference Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw and B. Yang, Homogenization of AlxCoCrFeNi High-entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133, p 120–131.CrossRef Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw and B. Yang, Homogenization of AlxCoCrFeNi High-entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133, p 120–131.CrossRef
15.
go back to reference G. Yang, Y. Zhao, D.H. Lee, J.M. Park, M.Y. Seok, J.Y. Suh, U. Ramamurty and J.I. Jang, Influence of Hydrogen on Incipient Plasticity in CoCrFeMnNi High-entropy Alloy, Scr. Mater, 2019, 161, p 23–27.CrossRef G. Yang, Y. Zhao, D.H. Lee, J.M. Park, M.Y. Seok, J.Y. Suh, U. Ramamurty and J.I. Jang, Influence of Hydrogen on Incipient Plasticity in CoCrFeMnNi High-entropy Alloy, Scr. Mater, 2019, 161, p 23–27.CrossRef
16.
go back to reference D.S. Liu, B.G. Cheng and Y.Y. Chen, Fine Microstructure and Toughness of Low Carbon Copper Containing Ultra-High Strength NV-F690 Heavy Steel Plate, Acta Metall. Sin., 2012, 48(3), p 334–342.CrossRef D.S. Liu, B.G. Cheng and Y.Y. Chen, Fine Microstructure and Toughness of Low Carbon Copper Containing Ultra-High Strength NV-F690 Heavy Steel Plate, Acta Metall. Sin., 2012, 48(3), p 334–342.CrossRef
17.
go back to reference M.A. Arafin and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2011, 528, p 4927–4940.CrossRef M.A. Arafin and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2011, 528, p 4927–4940.CrossRef
18.
go back to reference W.D. Nix and H.J. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J Mech Phys Solid, 1998, 46, p 411–425.CrossRef W.D. Nix and H.J. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J Mech Phys Solid, 1998, 46, p 411–425.CrossRef
19.
go back to reference Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng, B. An, X.Y. Chen and X.H. Wang, Hydrogen Effect on the Deformation Evolution Process In situ Detected by Nanoindentation Continuous Stiffness Measurement, Mater. Charact., 2017, 127, p 35–40.CrossRef Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng, B. An, X.Y. Chen and X.H. Wang, Hydrogen Effect on the Deformation Evolution Process In situ Detected by Nanoindentation Continuous Stiffness Measurement, Mater. Charact., 2017, 127, p 35–40.CrossRef
20.
go back to reference K.A. Nibur, D.F. Bahr and B.P. Somerday, Hydrogen Effects on Dislocation Activity in Austenitic Stainless Steel, Acta Mater, 2006, 54, p 2677–2684.CrossRef K.A. Nibur, D.F. Bahr and B.P. Somerday, Hydrogen Effects on Dislocation Activity in Austenitic Stainless Steel, Acta Mater, 2006, 54, p 2677–2684.CrossRef
21.
go back to reference A. Barnoush, M. Asgari and R. Johnsen, Resolving the Hydrogen Effect on Dislocation Nucleation and Mobility by Electrochemical Nanoindentation, Scripta Mater, 2012, 66, p 414–417.CrossRef A. Barnoush, M. Asgari and R. Johnsen, Resolving the Hydrogen Effect on Dislocation Nucleation and Mobility by Electrochemical Nanoindentation, Scripta Mater, 2012, 66, p 414–417.CrossRef
22.
go back to reference J. Hou, X.S. Kong, C.S. Liu and J. Song, Hydrogen Clustering in Bcc Metals: Atomic Origin and Strong Stress Anisotropy, Acta Mater, 2020, 201, p 23–35.CrossRef J. Hou, X.S. Kong, C.S. Liu and J. Song, Hydrogen Clustering in Bcc Metals: Atomic Origin and Strong Stress Anisotropy, Acta Mater, 2020, 201, p 23–35.CrossRef
23.
go back to reference Z. Cao and X. Zhang, Nanoindentation Creep of Plasmaenhanced CVDed Silicon Oxide Films, Scripta Mater., 2007, 56, p 249–252.CrossRef Z. Cao and X. Zhang, Nanoindentation Creep of Plasmaenhanced CVDed Silicon Oxide Films, Scripta Mater., 2007, 56, p 249–252.CrossRef
24.
go back to reference D.H. Lee, J.A. Lee, M.Y. Seok, U.B. Baek, S.H. Nahm and J.I. Jang, Stress Dependent Hardening-to-softening Transition of Hydrogen Effects in Nanoinde Ntation of a Linepipe Steel, Int. J Hydrog. Energy, 2014, 39, p 1897–1902.CrossRef D.H. Lee, J.A. Lee, M.Y. Seok, U.B. Baek, S.H. Nahm and J.I. Jang, Stress Dependent Hardening-to-softening Transition of Hydrogen Effects in Nanoinde Ntation of a Linepipe Steel, Int. J Hydrog. Energy, 2014, 39, p 1897–1902.CrossRef
25.
go back to reference F. Wang and K. Xu, An Investigation of Nanoindentation Creep in Polycrystalline Cu Thin Film, Mater. Lett., 2004, 58, p 2345–2349.CrossRef F. Wang and K. Xu, An Investigation of Nanoindentation Creep in Polycrystalline Cu Thin Film, Mater. Lett., 2004, 58, p 2345–2349.CrossRef
26.
go back to reference Z.L. Xu, H. Zhang, W.H. Li, A.Q. Mao, L. Wang, G.S. Song and Y.Z. He, Microstructure and Nanoindentation Creep Behavior of CoCrFeMnNi Highentropy Alloy Fabricated by Selective Laser Melting, Addit. Manuf., 2019, 28, p 766–771. Z.L. Xu, H. Zhang, W.H. Li, A.Q. Mao, L. Wang, G.S. Song and Y.Z. He, Microstructure and Nanoindentation Creep Behavior of CoCrFeMnNi Highentropy Alloy Fabricated by Selective Laser Melting, Addit. Manuf., 2019, 28, p 766–771.
27.
go back to reference X. Gao, Displacement Burst and Hydrogen Effect During Loading and Holding in Nanoindentation of an Iron Single Crystal, Scripta Mater, 2005, 53, p 1315–1320.CrossRef X. Gao, Displacement Burst and Hydrogen Effect During Loading and Holding in Nanoindentation of an Iron Single Crystal, Scripta Mater, 2005, 53, p 1315–1320.CrossRef
28.
go back to reference Y.J. Hong, C.S. Zhou, Y.Y. Zheng, J.Y. Zheng, L. Zhang and X.Y. Chen, Hydrogen Effect on Nanoindentation Creep of Austenitic Stainless Steel: A Comparative Study Between Primary Creep Stage and Steady-State Creep Stage, Int. J Hydrog. Energy, 2019, 44(40), p 22576–22583.CrossRef Y.J. Hong, C.S. Zhou, Y.Y. Zheng, J.Y. Zheng, L. Zhang and X.Y. Chen, Hydrogen Effect on Nanoindentation Creep of Austenitic Stainless Steel: A Comparative Study Between Primary Creep Stage and Steady-State Creep Stage, Int. J Hydrog. Energy, 2019, 44(40), p 22576–22583.CrossRef
29.
go back to reference T. Depover, T. Hajilou, D. Wan, D. Wang, A. Barnoush and K. Verbeken, Assessment of the Potential of Hydrogen Plasma Charging as Compared to Conventional Electrochemical Hydrogen Charging on Dual Phase Steel, Mater. Sci. Eng A, 2019, 754, p 613–621.CrossRef T. Depover, T. Hajilou, D. Wan, D. Wang, A. Barnoush and K. Verbeken, Assessment of the Potential of Hydrogen Plasma Charging as Compared to Conventional Electrochemical Hydrogen Charging on Dual Phase Steel, Mater. Sci. Eng A, 2019, 754, p 613–621.CrossRef
30.
go back to reference T. Michler, M.C. San, J. Naumann, S. Weber and M. Martin, Hydrogen Environment Embrittlement of Stable Austenitic Steels, Int. J. Hydrog. Energy, 2012, 37, p 16231–16246.CrossRef T. Michler, M.C. San, J. Naumann, S. Weber and M. Martin, Hydrogen Environment Embrittlement of Stable Austenitic Steels, Int. J. Hydrog. Energy, 2012, 37, p 16231–16246.CrossRef
31.
go back to reference X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su and L.J. Qiao, A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys, Metall Mater Trans A, 2008, 39A, p 87–97.CrossRef X.C. Ren, Q.J. Zhou, G.B. Shan, W.Y. Chu, J.X. Li, Y.J. Su and L.J. Qiao, A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys, Metall Mater Trans A, 2008, 39A, p 87–97.CrossRef
32.
go back to reference X.F. Li, W.H. Huang, X.B. Wu, J. Zhang, Y. Wang, E. Akiyama and D.W. Hou, Effect of Hydrogen Charging Time on Hydrogen Blister and Hydrogen-Induced Cracking of Pure Iron, Corros. Sci., 2021, 181, p 109200.CrossRef X.F. Li, W.H. Huang, X.B. Wu, J. Zhang, Y. Wang, E. Akiyama and D.W. Hou, Effect of Hydrogen Charging Time on Hydrogen Blister and Hydrogen-Induced Cracking of Pure Iron, Corros. Sci., 2021, 181, p 109200.CrossRef
33.
go back to reference M.Q. Wang, E. Akiyama and K. Tsuzaki, Effect of Hydrogen on the Fracture Behavior of High Strength Steel During Slow Strain Rate Test, Corro. Sci., 2007, 49, p 4081–4097.CrossRef M.Q. Wang, E. Akiyama and K. Tsuzaki, Effect of Hydrogen on the Fracture Behavior of High Strength Steel During Slow Strain Rate Test, Corro. Sci., 2007, 49, p 4081–4097.CrossRef
34.
go back to reference H.X. Jia, X.W. Zhang, J.P. Xu, Y.P. Sun and J.X. Li, Effect of Hydrogen Content and Strain Rate on Hydrogen-Induced Delay Cracking for Hot-Stamped Steel, Metals, 2019, 9, p 798.CrossRef H.X. Jia, X.W. Zhang, J.P. Xu, Y.P. Sun and J.X. Li, Effect of Hydrogen Content and Strain Rate on Hydrogen-Induced Delay Cracking for Hot-Stamped Steel, Metals, 2019, 9, p 798.CrossRef
35.
go back to reference Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng and X.Y. Chen, Effect of Hydrogen and Strain Rate on Nanoindentation Creep of Austenitic Stainless Steel, Int. J Hydrog. Energy, 2019, 44(2), p 1253–1262.CrossRef Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng and X.Y. Chen, Effect of Hydrogen and Strain Rate on Nanoindentation Creep of Austenitic Stainless Steel, Int. J Hydrog. Energy, 2019, 44(2), p 1253–1262.CrossRef
36.
go back to reference G.S. Frankel and R.M. Latanision, Hydrogen Transport During Deformation in Nickel: Part II. Single Crystal Nickel, Metall Trans A, 1986, 17(5), p 869–875.CrossRef G.S. Frankel and R.M. Latanision, Hydrogen Transport During Deformation in Nickel: Part II. Single Crystal Nickel, Metall Trans A, 1986, 17(5), p 869–875.CrossRef
37.
go back to reference M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis and I.M. Robertson, Modeling Hydrogen Transport by Dislocations, J. Mech. Phys. Solids, 2015, 78, p 511–525.CrossRef M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis and I.M. Robertson, Modeling Hydrogen Transport by Dislocations, J. Mech. Phys. Solids, 2015, 78, p 511–525.CrossRef
38.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Diffusible Hydrogen Level in Deposited Metal and Their Effect on Tensile Properties and Flexural Strength of P91 Steel, J. Eng. Mater. Technol, 2017, 139(3), p 031004.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar and N. Saini, Diffusible Hydrogen Level in Deposited Metal and Their Effect on Tensile Properties and Flexural Strength of P91 Steel, J. Eng. Mater. Technol, 2017, 139(3), p 031004.CrossRef
39.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare and S. Kumar, Study on Effect of Double Austenitization Treatment on Fracture Morphology Tensile Tested Nuclear Grade P92 Steel, Eng Fail Anal., 2019, 96, p 158–167.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare and S. Kumar, Study on Effect of Double Austenitization Treatment on Fracture Morphology Tensile Tested Nuclear Grade P92 Steel, Eng Fail Anal., 2019, 96, p 158–167.CrossRef
40.
go back to reference D.C. Ramachandran, J. Moon, C.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of Bainitic Microstructures with M-A Constituent on the Toughness of an HSLA Steel for Seismic Resistant Structural Applications, Mater. Sci. Eng. A, 2021, 801, p 140390.CrossRef D.C. Ramachandran, J. Moon, C.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of Bainitic Microstructures with M-A Constituent on the Toughness of an HSLA Steel for Seismic Resistant Structural Applications, Mater. Sci. Eng. A, 2021, 801, p 140390.CrossRef
41.
go back to reference Krauss G. Steels: Heat Treatment and Processing Principles, ASM Int. 1989:125–345. Krauss G. Steels: Heat Treatment and Processing Principles, ASM Int. 1989:125–345.
42.
go back to reference T. Swarr and G. Krauss, The Effect of Structure on the Deformation of As-quenched and Tempered Martensite in an Fe-0.2 pct C Alloy, Metall. Trans. A, 1976, 7, p 41–48.CrossRef T. Swarr and G. Krauss, The Effect of Structure on the Deformation of As-quenched and Tempered Martensite in an Fe-0.2 pct C Alloy, Metall. Trans. A, 1976, 7, p 41–48.CrossRef
43.
go back to reference T. Inoue, S. Matsuda, Y. Okamura and K. Aoli, The Fracture of a Low Carbon Tempered Martensite, Trans. JIM., 1970, 11, p 36–43.CrossRef T. Inoue, S. Matsuda, Y. Okamura and K. Aoli, The Fracture of a Low Carbon Tempered Martensite, Trans. JIM., 1970, 11, p 36–43.CrossRef
44.
go back to reference J.W. Morris, On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ Inter., 2011, 51, p 1569–1575.CrossRef J.W. Morris, On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ Inter., 2011, 51, p 1569–1575.CrossRef
45.
go back to reference X. Li, C. Shang, X. Ma, S.V. Subramanian, R.D.K. Misra and J. Sun, Structure and Crystallography of Martensite–Austenite Constituent in the Intercritically Reheated Coarse-Grained Heat Affected Zone of a High Strength Pipeline Steel, Mater. Charact., 2018, 138, p 107–112.CrossRef X. Li, C. Shang, X. Ma, S.V. Subramanian, R.D.K. Misra and J. Sun, Structure and Crystallography of Martensite–Austenite Constituent in the Intercritically Reheated Coarse-Grained Heat Affected Zone of a High Strength Pipeline Steel, Mater. Charact., 2018, 138, p 107–112.CrossRef
46.
go back to reference X.J. Di, X. An, F.J. Cheng, D.P. Wang, X.J. Guo and Z.K. Xue, Effect of Martensite-Austenite Constituent on Toughness of Simulated Inter-Critically Reheated Coarse Grained Heat-Affected Zone in X70 Pipeline Steel, Sci. Technol. Weld. Joi., 2016, 21(5), p 366–373.CrossRef X.J. Di, X. An, F.J. Cheng, D.P. Wang, X.J. Guo and Z.K. Xue, Effect of Martensite-Austenite Constituent on Toughness of Simulated Inter-Critically Reheated Coarse Grained Heat-Affected Zone in X70 Pipeline Steel, Sci. Technol. Weld. Joi., 2016, 21(5), p 366–373.CrossRef
47.
go back to reference L.Y. Lan, C.L. Qiu, H.Y. Song and D.W. Zhao, Correlation of Martensite–Austenite Constituent and Cleavage Crack Initiation in Welding Heat Affected Zone of Low Carbon Bainitic Steel, Mater. Lett., 2014, 125, p 86–88.CrossRef L.Y. Lan, C.L. Qiu, H.Y. Song and D.W. Zhao, Correlation of Martensite–Austenite Constituent and Cleavage Crack Initiation in Welding Heat Affected Zone of Low Carbon Bainitic Steel, Mater. Lett., 2014, 125, p 86–88.CrossRef
48.
go back to reference X.D. Li, X.P. Ma, S.V. Subramanian and C.J. Shang, EBSD Characterization of Secondary Microcracks in the Heat Affected Zone of a X100 Pipeline Steel Weld Joint, Int. J. Fract., 2015, 193, p 131–139.CrossRef X.D. Li, X.P. Ma, S.V. Subramanian and C.J. Shang, EBSD Characterization of Secondary Microcracks in the Heat Affected Zone of a X100 Pipeline Steel Weld Joint, Int. J. Fract., 2015, 193, p 131–139.CrossRef
49.
go back to reference T. Ohmura, M. Minor, E.A. Stach and J.W. Morris, Dislocation–Grain Boundary Interactions in Martensitic Steel Observed Through In situ Nanoindentation in a Transmission Electron Microscope, J Mater. Res., 2004, 19(12), p 3626–3632.CrossRef T. Ohmura, M. Minor, E.A. Stach and J.W. Morris, Dislocation–Grain Boundary Interactions in Martensitic Steel Observed Through In situ Nanoindentation in a Transmission Electron Microscope, J Mater. Res., 2004, 19(12), p 3626–3632.CrossRef
50.
go back to reference Y. Momotani, A. Shibata, T. Yonemura, Y. Bai and N. Tsuji, Effect of Initial Dislocation Density on Hydrogen Accumulation Behavior in Martensitic Steel, Scripta Mater, 2020, 178, p 318–323.CrossRef Y. Momotani, A. Shibata, T. Yonemura, Y. Bai and N. Tsuji, Effect of Initial Dislocation Density on Hydrogen Accumulation Behavior in Martensitic Steel, Scripta Mater, 2020, 178, p 318–323.CrossRef
51.
go back to reference H.T. Tian, J.C. Xin, Y. Li, X. Wang and Z.Y. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corro. Sci., 2019, 158, p 108089.CrossRef H.T. Tian, J.C. Xin, Y. Li, X. Wang and Z.Y. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corro. Sci., 2019, 158, p 108089.CrossRef
52.
go back to reference H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int., 2016, 56, p 24–36.CrossRef H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int., 2016, 56, p 24–36.CrossRef
53.
go back to reference Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo and J.M. Cairney, Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates, Science, 2020, 367, p 171–175.CrossRef Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo and J.M. Cairney, Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates, Science, 2020, 367, p 171–175.CrossRef
54.
go back to reference P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo and W.M. Rainforth, Hydrogen Embrittlement Through the Formation of Low-energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels, Sci. Adv., 2020, 6(46), p eabb6152.CrossRef P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo and W.M. Rainforth, Hydrogen Embrittlement Through the Formation of Low-energy Dislocation Nanostructures in Nanoprecipitation-Strengthened Steels, Sci. Adv., 2020, 6(46), p eabb6152.CrossRef
Metadata
Title
Effect of Hydrogen on Microstructure and Mechanical Behavior of High-Strength Bainitic Steel in Marine Application
Authors
Zhen Zhang
Anzhe Wang
Wei Zhao
Zhixin Ba
Zhengfei Hu
Shan Gao
Yuping Li
Publication date
28-01-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06544-z

Other articles of this Issue 6/2022

Journal of Materials Engineering and Performance 6/2022 Go to the issue

Premium Partners