Skip to main content
Top
Published in: Metallurgist 9-10/2023

24-02-2023

Effect of Thermal Deformation Treatment Regimes on Al–4.5Zn–4.5Mg–1Cu–0.12Zr–0.1Sc Alloy Structure and Properties

Authors: M. G. Khomutov, A. V. Pozdniakov, M. V. Glavatskikh, R. Yu. Barkov, A. Yu. Churyumov, A. Ya. Travyanov

Published in: Metallurgist | Issue 9-10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure and change in strength of Al–4.5%Zn–4.5%Mg–1%Cu–0,12%Zr–0,1%Sc alloy during annealing after hot deformation in the temperature range 300–450°C are studied. It is established that recrystallization hardly occurs during annealing: at temperatures of 350°C and 400°C softening does not occur, which microstructural studies confirm. During annealing at 450°C yield strength is reduced by increasing the proportion of recrystallized volume to 15%. The structure formed after hot and cold rolling and subsequent annealing has a significant effect on sheet ageing kinetics compared with an ingot. The maximum effect of ageing in the sheet is observed after treatment at 125°C, whereas similar strengthening is achieved in an ingot at 150°C. Test alloy after hot and cold rolling, quenching and ageing at 125°C for 28 hours exhibits a high level of mechanical properties: yield strength 480 ± 5 MPa; ultimate strength 545 ± 7 MPa; relative elongation 6.3 ± 0.4%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The author thanks candidate of technical science V. V. Chevererikin (NITU MISiS) for performing EBSD analysis.
 
2
The authors thank candidate of engineering science A. S. Prosviryakova (NITU MISiS) for performing tensile mechanical tests.
 
Literature
1.
go back to reference W. T. Huo, J. T. Shi, L. G. Hou, et al., “An improved thermomechanical treatment of high-strength Al–Zn–Mg–Cu alloy for effective grain refinement and ductility modification,” J. Mater. Process. Technol., 239, 303–314 (2017).CrossRef W. T. Huo, J. T. Shi, L. G. Hou, et al., “An improved thermomechanical treatment of high-strength Al–Zn–Mg–Cu alloy for effective grain refinement and ductility modification,” J. Mater. Process. Technol., 239, 303–314 (2017).CrossRef
2.
go back to reference T. Marlaud, A. Deschamps, F. Bley, et al., “Evolution of precipitate microstructures during the retrogression and reageing heat treatment of an Al–Zn–Mg–Cu alloy,” Acta Mater., 58, No 14, 4814–4826 (2010).CrossRef T. Marlaud, A. Deschamps, F. Bley, et al., “Evolution of precipitate microstructures during the retrogression and reageing heat treatment of an Al–Zn–Mg–Cu alloy,” Acta Mater., 58, No 14, 4814–4826 (2010).CrossRef
3.
go back to reference J. Zuo, L. Hou, J. Shi, et al., “Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing,” J. Alloys Compd., 716, 220–230 (2017).CrossRef J. Zuo, L. Hou, J. Shi, et al., “Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing,” J. Alloys Compd., 716, 220–230 (2017).CrossRef
4.
go back to reference L. Xu, L. Zhan, Y. Xu, et al., “Thermomechanical pretreatment of Al-Zn-Mg-Cu alloy to improve formability and performance during creep-age forming,” J. Mater. Process. Technol. Elsevier, 293, 117089 (2021).CrossRef L. Xu, L. Zhan, Y. Xu, et al., “Thermomechanical pretreatment of Al-Zn-Mg-Cu alloy to improve formability and performance during creep-age forming,” J. Mater. Process. Technol. Elsevier, 293, 117089 (2021).CrossRef
5.
go back to reference V. S. Zolotorevskii, Microstructure and Mechanical Properties of Cast Aluminum Alloys, Author’s Abstr. Diss. Cand. Techn. Sci., MISiS, Moscow (1979). V. S. Zolotorevskii, Microstructure and Mechanical Properties of Cast Aluminum Alloys, Author’s Abstr. Diss. Cand. Techn. Sci., MISiS, Moscow (1979).
6.
go back to reference N. S. Gerchikova, I. N. Fridlyander, N. I. Zaitseva, et al., “Change in structure ad properties of alloys of the system Al–Zn–Mg,” MiTOM, No. 3, 47-50 (1072). N. S. Gerchikova, I. N. Fridlyander, N. I. Zaitseva, et al., “Change in structure ad properties of alloys of the system Al–Zn–Mg,” MiTOM, No. 3, 47-50 (1072).
7.
go back to reference Y. Pan, D. Zhang, H. Liu, et al., “Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(-Cu) alloys,” J. Alloys Compd., 853, 157199 (2021).CrossRef Y. Pan, D. Zhang, H. Liu, et al., “Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(-Cu) alloys,” J. Alloys Compd., 853, 157199 (2021).CrossRef
8.
go back to reference Z. Chen, Z. Yuan, and J. Ren, “The mechanism of comprehensive properties enhancement in Al–Zn–Mg–Cu alloy via novel thermomechanical treatment,” J. Alloys Compd., 828, 154446 (2020).CrossRef Z. Chen, Z. Yuan, and J. Ren, “The mechanism of comprehensive properties enhancement in Al–Zn–Mg–Cu alloy via novel thermomechanical treatment,” J. Alloys Compd., 828, 154446 (2020).CrossRef
9.
go back to reference D. W. Suh, S. Y. Lee, K. H. Lee, et al., “Microstructural evolution of Al–Zn–Mg–Cu–(Sc) alloy during hot extrusion and heat treatments,” J. Mater. Process. Technol., 155–156, No. 1–3, 1330–1336 (2004).CrossRef D. W. Suh, S. Y. Lee, K. H. Lee, et al., “Microstructural evolution of Al–Zn–Mg–Cu–(Sc) alloy during hot extrusion and heat treatments,” J. Mater. Process. Technol., 155–156, No. 1–3, 1330–1336 (2004).CrossRef
10.
go back to reference O. N. Senkov, M. R. Shagiev, S. V. Senkova, et al., “Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc– Zr alloy during conventional solution heat treatment and its effect on tensile properties,” Acta Mater., 56, No. 15, 3723–3738 (2008).CrossRef O. N. Senkov, M. R. Shagiev, S. V. Senkova, et al., “Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc– Zr alloy during conventional solution heat treatment and its effect on tensile properties,” Acta Mater., 56, No. 15, 3723–3738 (2008).CrossRef
11.
go back to reference O. G. Senatorova, A. V. Bronz, V. V. Cheverikin, et al., “Study of the structure and properties of especially strong aluminum alloys of the Al–Zn–Mg–Cu system,” Metallurgist, 60, No. 9–10, 978–982 (2017).CrossRef O. G. Senatorova, A. V. Bronz, V. V. Cheverikin, et al., “Study of the structure and properties of especially strong aluminum alloys of the Al–Zn–Mg–Cu system,” Metallurgist, 60, No. 9–10, 978–982 (2017).CrossRef
12.
go back to reference L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar, et al., “Investigation of phase equilibria in alloys of the Al–Zn–Mg– Cu–Zr–Sc system,” J. Alloys Compd., 367, No. 1–2,10–16 (2004).CrossRef L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar, et al., “Investigation of phase equilibria in alloys of the Al–Zn–Mg– Cu–Zr–Sc system,” J. Alloys Compd., 367, No. 1–2,10–16 (2004).CrossRef
13.
go back to reference S. V. Senkova, O. N. Senkov, and D. B. Miracle, “Cryogenic and elevated temperature strengths of an Al−Zn−Mg−Cu alloy modified with Sc and Zr,” Metall. Mater. Trans. A, 237, No. 12, 3569–3575 (2006).CrossRef S. V. Senkova, O. N. Senkov, and D. B. Miracle, “Cryogenic and elevated temperature strengths of an Al−Zn−Mg−Cu alloy modified with Sc and Zr,” Metall. Mater. Trans. A, 237, No. 12, 3569–3575 (2006).CrossRef
14.
go back to reference A. D. Kotov, A. V. Mikhaylovskaya, M. S. Kishchik, et al., “Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment,” J. Alloys Compd., 688, 336–344 (2016).CrossRef A. D. Kotov, A. V. Mikhaylovskaya, M. S. Kishchik, et al., “Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment,” J. Alloys Compd., 688, 336–344 (2016).CrossRef
15.
go back to reference Y. Wang, B. Xiong, Z. Li, et al., “Precipitation behavior of Al3(Sc, Zr) particles in high-alloyed Al–Zn–Mg–Cu–Zr– Sc alloy during homogenization,” Arab. J. Sci. Eng. Springer Science and Business Media Deutschland GmbH, 46, No. 6, 6027–6037 (2021). Y. Wang, B. Xiong, Z. Li, et al., “Precipitation behavior of Al3(Sc, Zr) particles in high-alloyed Al–Zn–Mg–Cu–Zr– Sc alloy during homogenization,” Arab. J. Sci. Eng. Springer Science and Business Media Deutschland GmbH, 46, No. 6, 6027–6037 (2021).
16.
go back to reference A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc, Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater., 52, No. 7, 621–625 (2005).CrossRef A. Tolley, V. Radmilovic, and U. Dahmen, “Segregation in Al3(Sc, Zr) precipitates in Al–Sc–Zr alloys,” Scr. Mater., 52, No. 7, 621–625 (2005).CrossRef
17.
go back to reference B. Forbord, W. Lefebvre, F. Danoix, et al., “Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)- dispersoids in aluminium alloys,” Scr. Mater., 51, No. 4, 333–337 (2004).CrossRef B. Forbord, W. Lefebvre, F. Danoix, et al., “Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)- dispersoids in aluminium alloys,” Scr. Mater., 51, No. 4, 333–337 (2004).CrossRef
18.
go back to reference E. Clouet, L. Lae, T. Epicier, et al., “Complex precipitation pathways in multicomponent alloys,” Nat. Mater. Nature Publishing Group, 5, No. 6, 482–488 (2006).CrossRef E. Clouet, L. Lae, T. Epicier, et al., “Complex precipitation pathways in multicomponent alloys,” Nat. Mater. Nature Publishing Group, 5, No. 6, 482–488 (2006).CrossRef
19.
go back to reference M. G. Khomutov, A. V. Pozdniakov, A. Yu. Churyumov, et al., “Flow stress modelling and 3D processing maps of Al4.5Zn4.5Mg 1Cu0.12Zr alloy with different scandium contents,” Appl. Sci. Multidisciplinary Digital Publishing Institute, 11, No. 10, 4587 (2021). M. G. Khomutov, A. V. Pozdniakov, A. Yu. Churyumov, et al., “Flow stress modelling and 3D processing maps of Al4.5Zn4.5Mg 1Cu0.12Zr alloy with different scandium contents,” Appl. Sci. Multidisciplinary Digital Publishing Institute, 11, No. 10, 4587 (2021).
20.
go back to reference R. Kaibyshev, E. Avtokratova, A. Apollonov, et al., “High strain rate superplasticity in an Al–Mg–Sc–Zr alloy subjected to simple thermomechanical processing,” Scr. Mater., 54, No. 12, 2119–2124 ( 2006).CrossRef R. Kaibyshev, E. Avtokratova, A. Apollonov, et al., “High strain rate superplasticity in an Al–Mg–Sc–Zr alloy subjected to simple thermomechanical processing,” Scr. Mater., 54, No. 12, 2119–2124 ( 2006).CrossRef
21.
go back to reference A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, et al., “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng. A, 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, et al., “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng. A, 758, 28–35 (2019).CrossRef
22.
go back to reference S. M. Amer, A.V. Mikhaylovskaya, R.Yu. Barkov, et al., “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM, 73, No. 10, 3092–3101 (2021).CrossRef S. M. Amer, A.V. Mikhaylovskaya, R.Yu. Barkov, et al., “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM, 73, No. 10, 3092–3101 (2021).CrossRef
23.
go back to reference A. V. Mikhaylovskaya, A. D. Kotov, A.V. Pozdniakov, et al, “A high-strength aluminium-based alloy with advanced superplasticity,” J. Alloys Compd., 599, 139–144 (2014).CrossRef A. V. Mikhaylovskaya, A. D. Kotov, A.V. Pozdniakov, et al, “A high-strength aluminium-based alloy with advanced superplasticity,” J. Alloys Compd., 599, 139–144 (2014).CrossRef
24.
go back to reference M. G. Khomutov, A. V. Pozdnyakov, and M. V. Glavatskikh, “Effect of scandium content on structure and properties of alloy Al- 4,5%Zn-4.5%Mg-1%Cu-0.12%Zr,” MiTOM, No. 11 (797). 3–8 (2021). M. G. Khomutov, A. V. Pozdnyakov, and M. V. Glavatskikh, “Effect of scandium content on structure and properties of alloy Al- 4,5%Zn-4.5%Mg-1%Cu-0.12%Zr,” MiTOM, No. 11 (797). 3–8 (2021).
25.
go back to reference Y. Wang, X. Wu, L. Cao, et al., “Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments,” Mater. Sci. Eng. A, 792, 139807 (2020).CrossRef Y. Wang, X. Wu, L. Cao, et al., “Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments,” Mater. Sci. Eng. A, 792, 139807 (2020).CrossRef
26.
go back to reference M. V. Glavatskikh, R. Yu. Barkov, M. G. Khomutov, et al., “Effect of yttrium and erbium on phase composition and ageing of alloy Al–Zn–Mg–Cu–Zr with an increased copper content,” FMM, 123, No. 6, 1–7 (2022). M. V. Glavatskikh, R. Yu. Barkov, M. G. Khomutov, et al., “Effect of yttrium and erbium on phase composition and ageing of alloy Al–Zn–Mg–Cu–Zr with an increased copper content,” FMM, 123, No. 6, 1–7 (2022).
27.
go back to reference L. Zou, Q. Pan, Y. He, et al., “Effect of minor Sc and Zr addition on microstructures and mechanical properties of AlZn–Mg–Cu alloys,” Trans. Nonferrous Met. Soc. China, 17, No. 2, 340–345 (2007).CrossRef L. Zou, Q. Pan, Y. He, et al., “Effect of minor Sc and Zr addition on microstructures and mechanical properties of AlZn–Mg–Cu alloys,” Trans. Nonferrous Met. Soc. China, 17, No. 2, 340–345 (2007).CrossRef
Metadata
Title
Effect of Thermal Deformation Treatment Regimes on Al–4.5Zn–4.5Mg–1Cu–0.12Zr–0.1Sc Alloy Structure and Properties
Authors
M. G. Khomutov
A. V. Pozdniakov
M. V. Glavatskikh
R. Yu. Barkov
A. Yu. Churyumov
A. Ya. Travyanov
Publication date
24-02-2023
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01435-1

Other articles of this Issue 9-10/2023

Metallurgist 9-10/2023 Go to the issue

Premium Partners