Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2018

15-05-2018

Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

Authors: A. V. Goryk, S. B. Koval’chuk

Published in: Mechanics of Composite Materials | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Altenbach, “Theories for laminated and sandwich plates. A review,” Mech. Compos. Mater., 34, No. 3, 243-252 (1998).CrossRef H. Altenbach, “Theories for laminated and sandwich plates. A review,” Mech. Compos. Mater., 34, No. 3, 243-252 (1998).CrossRef
2.
go back to reference S. A. Ambartsumyan, Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1987). S. A. Ambartsumyan, Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1987).
3.
go back to reference V. V. Bolotin and Yu. N. Novitchkov, Mechanics of Multilayered Structures [in Russian], Mashinostroyenie, Moscow (1980). V. V. Bolotin and Yu. N. Novitchkov, Mechanics of Multilayered Structures [in Russian], Mashinostroyenie, Moscow (1980).
4.
go back to reference V. V. Vasil’yev, Mechanics of Structures from Composite Materials [in Russian], Mashinostroyenie, Moscow (1988). V. V. Vasil’yev, Mechanics of Structures from Composite Materials [in Russian], Mashinostroyenie, Moscow (1988).
5.
go back to reference V. G. Piskunov, A. V. Gorik, A. L. Lyakhov, and V. M. Cherednikov, “High-order model of the stress-strain state of composite bars ans its implementation by computer algebra,” Compos. Struct., 48, Iss. 1-3, 169-176 (2000), doi: 10.19/6/S0263-8223(99) 00091-4. V. G. Piskunov, A. V. Gorik, A. L. Lyakhov, and V. M. Cherednikov, “High-order model of the stress-strain state of composite bars ans its implementation by computer algebra,” Compos. Struct., 48, Iss. 1-3, 169-176 (2000), doi: 10.19/6/S0263-8223(99) 00091-4.
6.
go back to reference E. I. Grigolyuk and I. T. Selezov, Nonclassical Vibration Theory of Bars, Plates, and Shells. Results of Science and Technics [in Russian], 5, Nauka, Moscow (1972). E. I. Grigolyuk and I. T. Selezov, Nonclassical Vibration Theory of Bars, Plates, and Shells. Results of Science and Technics [in Russian], 5, Nauka, Moscow (1972).
7.
go back to reference A. N. Guz’, Ya. M. Grigorenko, G. A. Vanin, and I. Yu. Babich, Mechanics of Structural Elements, 2, Mechanics of Cоmposite Materials and Structural Elements [in Russian], Naukova Dumka, Kiev (1983). A. N. Guz’, Ya. M. Grigorenko, G. A. Vanin, and I. Yu. Babich, Mechanics of Structural Elements, 2, Mechanics of Cоmposite Materials and Structural Elements [in Russian], Naukova Dumka, Kiev (1983).
8.
go back to reference A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Zinatne, Riga (1980). A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Zinatne, Riga (1980).
9.
go back to reference V. G. Piskunov, “An iterative analytical theory in the mechanics layered composite systems,” Mech. Compos. Mater., 39, No. 1, 2-24. (2003).CrossRef V. G. Piskunov, “An iterative analytical theory in the mechanics layered composite systems,” Mech. Compos. Mater., 39, No. 1, 2-24. (2003).CrossRef
10.
go back to reference V. G. Piskunov and V. E. Verizhenko, Linear and Nonlinear Problems of Calculation of Layered Structures [in Russian], Budivel’nik, Kiev (1986). V. G. Piskunov and V. E. Verizhenko, Linear and Nonlinear Problems of Calculation of Layered Structures [in Russian], Budivel’nik, Kiev (1986).
11.
go back to reference A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shul’ga, Theory and Calculation of Laminated Orthotropic Plates and Shells [in Russian], Visha Shkola, Кiev (1987). A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shul’ga, Theory and Calculation of Laminated Orthotropic Plates and Shells [in Russian], Visha Shkola, Кiev (1987).
12.
go back to reference S. G. Lekhnitskij, Elasticity Theory of an Anisotropic Bodies [in Russian], Nauka, Moscow (1977). S. G. Lekhnitskij, Elasticity Theory of an Anisotropic Bodies [in Russian], Nauka, Moscow (1977).
13.
go back to reference A. V. Marchuk, “Three-dimensional analytical solution,” Prikl. Mekh., 33, No. 9, 10-14 (1997). A. V. Marchuk, “Three-dimensional analytical solution,” Prikl. Mekh., 33, No. 9, 10-14 (1997).
14.
go back to reference N. I. Muskhelishvili, Some Fundamentals Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966). N. I. Muskhelishvili, Some Fundamentals Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).
15.
go back to reference N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending,” J. Compos. Mater., 3, No. 3, 398−411 (1969).CrossRef N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending,” J. Compos. Mater., 3, No. 3, 398−411 (1969).CrossRef
16.
go back to reference Pagano N. J. “Exact solutions for rectangular bidirectional composites,” J. Compos. Mater., 4, No. 1, 20-34 (1970).CrossRef Pagano N. J. “Exact solutions for rectangular bidirectional composites,” J. Compos. Mater., 4, No. 1, 20-34 (1970).CrossRef
Metadata
Title
Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End
Authors
A. V. Goryk
S. B. Koval’chuk
Publication date
15-05-2018
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9730-z

Other articles of this Issue 2/2018

Mechanics of Composite Materials 2/2018 Go to the issue

Premium Partners