Skip to main content
Top
Published in: Colloid and Polymer Science 1/2020

04-12-2019 | Original Contribution

Electrospun PCL-based polyurethane/HA microfibers as drug carrier of dexamethasone with enhanced biodegradability and shape memory performances

Authors: Haitao Lv, Dongyan Tang, Zhaojie Sun, Jingru Gao, Xu Yang, Shuyue Jia, Jing Peng

Published in: Colloid and Polymer Science | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shape memory polymers (SMP) with better biodegradability and better stability have great potential applications in biomedical fields, such as the drug carriers or the tissue engineering scaffolds. In this study, poly(ε-caprolactone)(PCL)-based polyurethane(PU) microfibers were fabricated with the containing of hydroxyapatite(HA) to enhance the biodegradability and to exhibit excellent shape memory performance. The composition, the morphology, the thermal stability, and the mechanical properties of the microfibers were characterized and detected using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1HNMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC). and dynamic mechanical analysis (DMA), etc. And dexamethasone was selected as drug model to investigate the delivery and release behaviors of the carrier of the microfibers. It was revealed that HA enhanced the degradation rate of the shape memory polyurethane (SMPU) fibers, and the fibers could guarantee a sustained long time drug release. The detection on the shape memory performance found that, with the different addition amounts of HA, the composite microfibers of (SMPU) and HA exhibited the different shape memory transition temperature (Ttrans) values. And with the addition of 3 wt% of HA, the excellent shape recovery ratios of Rr (> 97%) and the shortest recovery time of ~ 6 s could be obtained. With further increase of the amounts of HA, the recovery force and the recovery time were reduced and prolonged, respectively. The obtained results proved that the biodegradable SMPU/HA composite microfibers have more valuable application prospects in biomedical fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen H, Li Y, Liu Y, Gong T, Wang L, Zhou S (2014) Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym Chem 5:5168–5174CrossRef Chen H, Li Y, Liu Y, Gong T, Wang L, Zhou S (2014) Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym Chem 5:5168–5174CrossRef
2.
go back to reference Wu Y, Wang L, Guo B, Shao Y, Ma PX (2016) Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87:18–31CrossRef Wu Y, Wang L, Guo B, Shao Y, Ma PX (2016) Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87:18–31CrossRef
3.
go back to reference Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410CrossRef Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410CrossRef
4.
5.
go back to reference Pieczyska EA, Maj M, Kowalczyk-Gajewska K, Staszczak M, Gradys A, Majewski M, Cristea M, Tobushi H, Hayashi S (2015) Thermomechanical properties of polyurethane shape memory polymer–experiment and modelling. Smart Mater Struct 24:045043CrossRef Pieczyska EA, Maj M, Kowalczyk-Gajewska K, Staszczak M, Gradys A, Majewski M, Cristea M, Tobushi H, Hayashi S (2015) Thermomechanical properties of polyurethane shape memory polymer–experiment and modelling. Smart Mater Struct 24:045043CrossRef
6.
go back to reference Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12:1156–1171CrossRef Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12:1156–1171CrossRef
7.
go back to reference Wong Y, Kong J, Widjaja LK, Venkatraman SS (2014) Biomedical applications of shape-memory polymers: how practically useful are they? Sci China Chem 57:476–489CrossRef Wong Y, Kong J, Widjaja LK, Venkatraman SS (2014) Biomedical applications of shape-memory polymers: how practically useful are they? Sci China Chem 57:476–489CrossRef
8.
go back to reference Kashif M, Yun B-m, Lee K-S, Chang Y-W (2016) Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: sustained drug release and hydrolytic degradation. Mater Lett 166:125–128CrossRef Kashif M, Yun B-m, Lee K-S, Chang Y-W (2016) Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: sustained drug release and hydrolytic degradation. Mater Lett 166:125–128CrossRef
9.
go back to reference Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, Lu HB, Tang C, Ding Z, Zhang JL (2013) Shaping tissue with shape memory materials. Adv Drug Deliv Rev 65:515–535CrossRef Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, Lu HB, Tang C, Ding Z, Zhang JL (2013) Shaping tissue with shape memory materials. Adv Drug Deliv Rev 65:515–535CrossRef
10.
go back to reference Baudis S, Behl M, Lendlein A (2014) Smart polymers for biomedical applications. Macromol Chem Phys 215:2399–2402CrossRef Baudis S, Behl M, Lendlein A (2014) Smart polymers for biomedical applications. Macromol Chem Phys 215:2399–2402CrossRef
11.
go back to reference Gu L, Cui B, Wu Q-Y, Yu H (2016) Bio-based polyurethanes with shape memory behavior at body temperature: effect of different chain extenders. RSC Adv. 6:17888–17895CrossRef Gu L, Cui B, Wu Q-Y, Yu H (2016) Bio-based polyurethanes with shape memory behavior at body temperature: effect of different chain extenders. RSC Adv. 6:17888–17895CrossRef
12.
go back to reference Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Ann Rev Mater Res 39:445–471CrossRef Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Ann Rev Mater Res 39:445–471CrossRef
13.
go back to reference Zhang Y, Wang C, Pei X, Wang Q, Wang T (2010) Shape memory polyurethanes containing azo exhibiting photoisomerization function. J Mat Chem 20:9976–9981CrossRef Zhang Y, Wang C, Pei X, Wang Q, Wang T (2010) Shape memory polyurethanes containing azo exhibiting photoisomerization function. J Mat Chem 20:9976–9981CrossRef
14.
go back to reference Yang CS, Wu HC, Sun JS, Hsiao HM, Wang TW (2013) Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Appl Mater Interfaces 5:10985–10994CrossRef Yang CS, Wu HC, Sun JS, Hsiao HM, Wang TW (2013) Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Appl Mater Interfaces 5:10985–10994CrossRef
15.
go back to reference Feng Y, Zhang S, Wang H, Zhao H, Lu J, Guo J, Behl M, Lendlein A (2011) Drug release from biodegradable polyesterurethanes with shape-memory effect. J Control Release 152(Suppl 1):e20–e21CrossRef Feng Y, Zhang S, Wang H, Zhao H, Lu J, Guo J, Behl M, Lendlein A (2011) Drug release from biodegradable polyesterurethanes with shape-memory effect. J Control Release 152(Suppl 1):e20–e21CrossRef
16.
go back to reference Zhang SF, Feng YK, Zhang L, Guo JT, Xu YS (2010) Biodegradable Polyesterurethane Networks for Controlled Release of Aspirin. J Appl Polym Sci 116:861–867 Zhang SF, Feng YK, Zhang L, Guo JT, Xu YS (2010) Biodegradable Polyesterurethane Networks for Controlled Release of Aspirin. J Appl Polym Sci 116:861–867
17.
go back to reference Nail LN, Zhang D, Reinhard JL, Grunlan MA (2015) Fabrication of a bioactive, PCL-based “Self-fitting” Shape Memory Polymer Scaffold. J Vis Exp 104:52981–52988 Nail LN, Zhang D, Reinhard JL, Grunlan MA (2015) Fabrication of a bioactive, PCL-based “Self-fitting” Shape Memory Polymer Scaffold. J Vis Exp 104:52981–52988
18.
go back to reference Du K, Gan Z (2014) Shape memory behaviour of HA-g-PDLLA nanocomposites prepared via in situ polymerization. J Mat Chem B 2:3340–3348CrossRef Du K, Gan Z (2014) Shape memory behaviour of HA-g-PDLLA nanocomposites prepared via in situ polymerization. J Mat Chem B 2:3340–3348CrossRef
19.
go back to reference Kutikov AB, Reyer KA, Song J (2014) Shape Memory performance of thermoplastic amphiphilic triblock copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/hydroxyapatite composites. Macromol Chem Phys 215:2482–2490CrossRef Kutikov AB, Reyer KA, Song J (2014) Shape Memory performance of thermoplastic amphiphilic triblock copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/hydroxyapatite composites. Macromol Chem Phys 215:2482–2490CrossRef
20.
go back to reference Bao M, Wang X, Yuan H, Lou X, Zhao Q, Zhang Y (2016) HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. J Mater Chem B 4:5308–5320CrossRef Bao M, Wang X, Yuan H, Lou X, Zhao Q, Zhang Y (2016) HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. J Mater Chem B 4:5308–5320CrossRef
21.
go back to reference Wong TW, Wahit MU, Abdul Kadir MR, Soheilmoghaddam M, Balakrishnan H (2014) A novel poly(xylitol-co-dodecanedioate)/hydroxyapatite composite with shape-memory behaviour. Mater Lett 126:105–108CrossRef Wong TW, Wahit MU, Abdul Kadir MR, Soheilmoghaddam M, Balakrishnan H (2014) A novel poly(xylitol-co-dodecanedioate)/hydroxyapatite composite with shape-memory behaviour. Mater Lett 126:105–108CrossRef
22.
go back to reference Reit R, Lund B, Voit W (2014) Shape memory polymer–inorganic hybrid nanocomposites. Adv Polym Sci 267:313–350CrossRef Reit R, Lund B, Voit W (2014) Shape memory polymer–inorganic hybrid nanocomposites. Adv Polym Sci 267:313–350CrossRef
23.
go back to reference Zou H, Weder C, Simon YC (2015) Shape-memory polyurethane nanocomposites with single layer or bilayer oleic acid-coated Fe3O4nanoparticles. Macromol. Mater. Eng 300:885–892CrossRef Zou H, Weder C, Simon YC (2015) Shape-memory polyurethane nanocomposites with single layer or bilayer oleic acid-coated Fe3O4nanoparticles. Macromol. Mater. Eng 300:885–892CrossRef
24.
go back to reference Zhuo H, Hu J, Chen S (2008) Electrospun polyurethane nanofibres having shape memory effect. Mater Lett 62:2074–2076CrossRef Zhuo H, Hu J, Chen S (2008) Electrospun polyurethane nanofibres having shape memory effect. Mater Lett 62:2074–2076CrossRef
25.
go back to reference Hunley MT, Long TE (2008) Electrospinning functional nanoscale fibers: a perspective for the future. Polym Int 57:385–389CrossRef Hunley MT, Long TE (2008) Electrospinning functional nanoscale fibers: a perspective for the future. Polym Int 57:385–389CrossRef
26.
go back to reference Zhang JN, Ma YM, Zhang JJ, Xu D, Yang QL, Guan JG, Cao XY, Jiang L (2011) Microfiber SMPU film affords quicker shape recovery than the bulk one. Mater Lett 65:3639–3642CrossRef Zhang JN, Ma YM, Zhang JJ, Xu D, Yang QL, Guan JG, Cao XY, Jiang L (2011) Microfiber SMPU film affords quicker shape recovery than the bulk one. Mater Lett 65:3639–3642CrossRef
27.
go back to reference Guo F, Wang N, Wang L, Hou L, Ma L, Liu J, Chen Y, Fan B, Zhao Y (2015) An electrospun strong PCL/PU composite vascular graft with mechanical anisotropy and cyclic stability. J Mater Chem A 3:4782–4787CrossRef Guo F, Wang N, Wang L, Hou L, Ma L, Liu J, Chen Y, Fan B, Zhao Y (2015) An electrospun strong PCL/PU composite vascular graft with mechanical anisotropy and cyclic stability. J Mater Chem A 3:4782–4787CrossRef
28.
go back to reference Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: Past, present and future developments. Prog Polym Sci 49-50:3–33CrossRef Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: Past, present and future developments. Prog Polym Sci 49-50:3–33CrossRef
29.
go back to reference Chen H, Cao X, Zhang J, Zhang J, Ma Y, Shi G, Ke Y, Tong D, Jiang L (2012) Electrospun shape memory film with reversible fibrous structure. J Mat Chem 22:22387–22391CrossRef Chen H, Cao X, Zhang J, Zhang J, Ma Y, Shi G, Ke Y, Tong D, Jiang L (2012) Electrospun shape memory film with reversible fibrous structure. J Mat Chem 22:22387–22391CrossRef
30.
go back to reference Gandhimathi C (2015) Controlled release of dexamethasone in PCL/silk fibroin/ascorbic acid nanoparticles for the initiation of adipose derived stem cells into osteogenesis. J Drug Metab Toxicol 5:177–183 Gandhimathi C (2015) Controlled release of dexamethasone in PCL/silk fibroin/ascorbic acid nanoparticles for the initiation of adipose derived stem cells into osteogenesis. J Drug Metab Toxicol 5:177–183
31.
go back to reference Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771CrossRef Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771CrossRef
32.
go back to reference Costa PF, Puga AM, Diaz-Gomez L, Concheiro A, Busch DH, Alvarez-Lorenzo C (2015) Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm 496:541–550CrossRef Costa PF, Puga AM, Diaz-Gomez L, Concheiro A, Busch DH, Alvarez-Lorenzo C (2015) Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm 496:541–550CrossRef
33.
go back to reference Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater 21:3394–3398CrossRef Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater 21:3394–3398CrossRef
34.
go back to reference Ping P, Wang W, Chen X, Jing X (2007) The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. J Polym Sci Pt B-Polym Phys 45:557–570CrossRef Ping P, Wang W, Chen X, Jing X (2007) The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. J Polym Sci Pt B-Polym Phys 45:557–570CrossRef
35.
go back to reference Cui J, Kratz K, Heuchel M, Hiebl B, Lendlein A (2011) Mechanically active scaffolds from radio-opaque shape-memory polymer-based composites. Polym Adv Technol 22:180–189CrossRef Cui J, Kratz K, Heuchel M, Hiebl B, Lendlein A (2011) Mechanically active scaffolds from radio-opaque shape-memory polymer-based composites. Polym Adv Technol 22:180–189CrossRef
36.
go back to reference Lakatos C, Czifrak K, Papp R, Karger-Kocsis J, Zsuga M, Keki S (2016) Segmented linear shape memory polyurethanes with thermoreversible Diels-Alder coupling: Effects of polycaprolactone molecular weight and diisocyanate type. Express Polym Lett 10:324–336CrossRef Lakatos C, Czifrak K, Papp R, Karger-Kocsis J, Zsuga M, Keki S (2016) Segmented linear shape memory polyurethanes with thermoreversible Diels-Alder coupling: Effects of polycaprolactone molecular weight and diisocyanate type. Express Polym Lett 10:324–336CrossRef
37.
go back to reference Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/ calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147CrossRef Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/ calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147CrossRef
38.
go back to reference Fratoddi I, Venditti I, Cametti C, Palocci C, Chronopoulou L, Marino M, Acconcia F, Russo MV (2012) Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B: Biointerfaces 93:59–66CrossRef Fratoddi I, Venditti I, Cametti C, Palocci C, Chronopoulou L, Marino M, Acconcia F, Russo MV (2012) Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B: Biointerfaces 93:59–66CrossRef
Metadata
Title
Electrospun PCL-based polyurethane/HA microfibers as drug carrier of dexamethasone with enhanced biodegradability and shape memory performances
Authors
Haitao Lv
Dongyan Tang
Zhaojie Sun
Jingru Gao
Xu Yang
Shuyue Jia
Jing Peng
Publication date
04-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 1/2020
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-019-04568-5

Other articles of this Issue 1/2020

Colloid and Polymer Science 1/2020 Go to the issue

Premium Partners