Skip to main content
Top
Published in: Quantum Information Processing 4/2019

01-04-2019

Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies

Author: Paul B. Slater

Published in: Quantum Information Processing | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We first seek the rebit–retrit counterpart to the (formally proven by Lovas and Andai) two-rebit Hilbert–Schmidt separability probability of \(\frac{29}{64} =\frac{29}{2^6} \approx 0.453125\) and the qubit–qutrit analogue of the (strongly supported) value of \(\frac{8}{33} = \frac{2^3}{3 \cdot 11} \approx 0.242424\). We advance the possibilities of a rebit–retrit value of \(\frac{860}{6561} =\frac{2^2 \cdot 5 \cdot 43}{3^8} \approx 0.131078\) and a qubit–qutrit one of \(\frac{27}{1000} = (\frac{3}{10})^3 =\frac{3^3}{2^3 \cdot 5^3} = 0.027\). These four values for \(2 \times m\) systems (\(m=2,3\)) suggest certain numerator/denominator sequences involving powers of m, which we further investigate for \(m>3\). Additionally, we find that the Hilbert–Schmidt separability/PPT-probabilities for the two-rebit, rebit–retrit and two-retrit X-states all equal \(\frac{16}{3 \pi ^2} \approx 0.54038\), as well as more generally, that the probabilities based on induced measures are equal across these three sets. Then, we extend the master Lovas–Andai formula to induced measures. For instance, the two-qubit function (\(k=0\)) is \(\tilde{\chi }_{2,0}(\varepsilon )=\frac{1}{3} \varepsilon ^2 (4 -\varepsilon ^2)\), yielding \(\frac{8}{33}\), while its \(k=1\) induced measure counterpart is \(\tilde{\chi }_{2,1}(\varepsilon )=\frac{1}{4} \varepsilon ^2 \left( 3-\varepsilon ^2\right) ^2\), yielding \(\frac{61}{143} =\frac{61}{11 \cdot 13} \approx 0.426573\), where \(\varepsilon \) is a singular-value ratio. Interpolations between Hilbert–Schmidt and operator monotone (Bures, \(\sqrt{x}\)) measures are also studied. Using a recently-developed golden-ratio-related (quasirandom sequence) approach, current (significant digits) estimates of the two-rebit and two-qubit Bures separability probabilities are 0.15709 and 0.07331, respectively–with an additional indicator that the latter probability may be \(\frac{25}{341} =\frac{5^2}{11 \cdot 31} \approx 0.07331378\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4\times 4\) bipartite systems. J. Phys. A Math. Theor 50, 295303 (2017)CrossRef Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4\times 4\) bipartite systems. J. Phys. A Math. Theor 50, 295303 (2017)CrossRef
2.
go back to reference Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRef Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRef
3.
go back to reference Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRef Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRef
4.
go back to reference Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018a)ADSCrossRef Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018a)ADSCrossRef
7.
go back to reference Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRef Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRef
8.
go back to reference Slater, P.B.: A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities. J. Phys. A Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRef Slater, P.B.: A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities. J. Phys. A Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRef
9.
go back to reference Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times \) 2 separability probabilities. J. Phys. A Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRef Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times \) 2 separability probabilities. J. Phys. A Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRef
10.
go back to reference Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRef Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRef
11.
go back to reference Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press on Demand, Oxford (1995)MATH Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press on Demand, Oxford (1995)MATH
12.
go back to reference Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRef Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRef
15.
go back to reference Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRef Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRef
17.
go back to reference Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRef Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRef
18.
go back to reference Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)MATH Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)MATH
19.
go back to reference Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRef Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRef
21.
go back to reference Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRef Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRef
22.
go back to reference Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRef Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRef
23.
go back to reference Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRef Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRef
25.
26.
27.
go back to reference Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRef Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRef
28.
go back to reference Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit states. Adv. Math. Phys. 2015, 621353 (2015)MathSciNetCrossRef Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit states. Adv. Math. Phys. 2015, 621353 (2015)MathSciNetCrossRef
29.
go back to reference Slater, P.B.: Formulas for generalized two-qubit separability probabilities. Adv. Math. Phys. 2018, 9365213 (2018b)MathSciNetCrossRef Slater, P.B.: Formulas for generalized two-qubit separability probabilities. Adv. Math. Phys. 2018, 9365213 (2018b)MathSciNetCrossRef
30.
go back to reference Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016a)ADSMathSciNetCrossRef Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016a)ADSMathSciNetCrossRef
31.
go back to reference Gerdt, V., Mladenov, D., Palii, Y., Khvedelidze, A.: SU (6) Casimir invariants and SU (2)–SU (3) scalars for a mixed qubit–qutrit state. J. Math. Sci. 179, 690 (2011)MathSciNetCrossRef Gerdt, V., Mladenov, D., Palii, Y., Khvedelidze, A.: SU (6) Casimir invariants and SU (2)–SU (3) scalars for a mixed qubit–qutrit state. J. Math. Sci. 179, 690 (2011)MathSciNetCrossRef
32.
go back to reference Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)ADSMathSciNetCrossRef Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)ADSMathSciNetCrossRef
33.
go back to reference Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRef Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRef
34.
35.
go back to reference Augusiak, R., Demianowicz, M., Horodecki, P.: Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77, 030301 (2008)ADSCrossRef Augusiak, R., Demianowicz, M., Horodecki, P.: Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77, 030301 (2008)ADSCrossRef
36.
go back to reference Johnston, N.: Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Phys. Rev. A 87, 064302 (2013a)ADSCrossRef Johnston, N.: Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Phys. Rev. A 87, 064302 (2013a)ADSCrossRef
37.
go back to reference Mendonça, P.E., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit–qutrit systems. Phys. Rev. A 95, 022324 (2017)ADSCrossRef Mendonça, P.E., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit–qutrit systems. Phys. Rev. A 95, 022324 (2017)ADSCrossRef
38.
go back to reference Provost, S.B.: Moment-based density approximants. Math. J. 9, 727 (2005) Provost, S.B.: Moment-based density approximants. Math. J. 9, 727 (2005)
40.
go back to reference Qian, C., Li, J.-L., Qiao, C.-F.: State-independent uncertainty relations and entanglement detection. Quantum Inf. Process. 17, 84 (2018)ADSMathSciNetCrossRef Qian, C., Li, J.-L., Qiao, C.-F.: State-independent uncertainty relations and entanglement detection. Quantum Inf. Process. 17, 84 (2018)ADSMathSciNetCrossRef
42.
go back to reference Johnston, N.: Separability from spectrum for qubit-qudit states. Phys. Rev. A 88, 062330 (2013b)ADSCrossRef Johnston, N.: Separability from spectrum for qubit-qudit states. Phys. Rev. A 88, 062330 (2013b)ADSCrossRef
43.
go back to reference Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429, 901 (2008)MathSciNetCrossRef Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429, 901 (2008)MathSciNetCrossRef
44.
go back to reference Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)ADSCrossRef Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)ADSCrossRef
45.
go back to reference Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRef Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRef
46.
go back to reference Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B Condens Matter Complex Syst. 17, 471 (2000)CrossRef Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B Condens Matter Complex Syst. 17, 471 (2000)CrossRef
47.
go back to reference Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRef Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRef
48.
go back to reference Penson, K.A., Życzkowski, K.: Product of ginibre matrices: Fuss–Catalan and raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRef Penson, K.A., Życzkowski, K.: Product of ginibre matrices: Fuss–Catalan and raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRef
49.
50.
go back to reference Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRef Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRef
52.
go back to reference Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRef Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRef
53.
go back to reference Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits computing separability probabilities for fixed rank states. In: EPJ Web of Conferences, EDP Sciences, vol. 173, p. 02010 (2018) Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits computing separability probabilities for fixed rank states. In: EPJ Web of Conferences, EDP Sciences, vol. 173, p. 02010 (2018)
54.
go back to reference Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRef Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRef
55.
56.
go back to reference Slater, P.B.: Quasirandom estimation of bures two-qubit and two-rebit separability probabilities (2019). arXiv preprint arXiv:1901.09889 Slater, P.B.: Quasirandom estimation of bures two-qubit and two-rebit separability probabilities (2019). arXiv preprint arXiv:​1901.​09889
57.
59.
go back to reference Slater, P.B.: Two-qubit separability probabilities as joint functions of the Bloch radii of the qubit subsystems. Int. J. Quantum Inf. 14, 1650042 (2016b)MathSciNetCrossRef Slater, P.B.: Two-qubit separability probabilities as joint functions of the Bloch radii of the qubit subsystems. Int. J. Quantum Inf. 14, 1650042 (2016b)MathSciNetCrossRef
60.
go back to reference Altafini, C.: Tensor of coherences parametrization of multiqubit density operators for entanglement characterization. Phys. Rev. A 69, 012311 (2004)ADSCrossRef Altafini, C.: Tensor of coherences parametrization of multiqubit density operators for entanglement characterization. Phys. Rev. A 69, 012311 (2004)ADSCrossRef
61.
go back to reference Ruskai, M.B., Werner, E.M.: Bipartite states of low rank are almost surely entangled. J. Phys. A Math. Theor. 42, 095303 (2009)ADSMathSciNetCrossRef Ruskai, M.B., Werner, E.M.: Bipartite states of low rank are almost surely entangled. J. Phys. A Math. Theor. 42, 095303 (2009)ADSMathSciNetCrossRef
Metadata
Title
Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies
Author
Paul B. Slater
Publication date
01-04-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 4/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2230-9

Other articles of this Issue 4/2019

Quantum Information Processing 4/2019 Go to the issue