Skip to main content
Top
Published in: Journal of Materials Science 4/2019

09-11-2018 | Materials for life sciences

Flexible substrate-based thermo-responsive valve applied in electromagnetically powered drug delivery system

Authors: Ying Yi, Ruining Huang, Changping Li

Published in: Journal of Materials Science | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a novel drug delivery system consisting of an electrolytic pump to drive the drug solution and a flexible substrate-based thermo-responsive valve to control the exit port. An electromagnetic field (60 mT, 450 kHz) is used to wirelessly power both the pump and the valve. The valve model is fabricated out of polydimethylsiloxane, in which a thermo-responsive poly N-isopropylacrylamide hydrogel is filled. This valve can avoid undesired drug diffusion at the outlet of the device over an extended period; it also allows a reverse flow to refill the drug reservoir within a given opening time. This is especially suitable for long-term drug delivery using a solid drug in reservoir approach. When the electromagnetic field is turned on, an electrolytic reaction happens in the actuator which results in an electrolysis-bubble expansion that drives the drug liquid toward the valve. In the meantime, the iron microparticles that are embedded into the PDMS substrate produce heat due to magnetic losses. The heating of the iron powder causes the hydrogel to shrink, resulting in an open valve. When the electromagnetic field is turned off, the bubbles are recombined in the presence of electrolysis catalysts, thereby decreasing the pressure in the actuator. This draws fresh body liquid from outside the device into the drug reservoir to dissolve the remaining solid-form drug before the PNIPAM fully seals the valve. Our experimental results reveal that the system is capable of being repeatedly implemented, and flow is effectively controlled by an external magnetic field strength.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Yi Y, Kosel J (2017) A remotely operated drug delivery system with dose control. Sens Actuators A Phys 261:177–183CrossRef Yi Y, Kosel J (2017) A remotely operated drug delivery system with dose control. Sens Actuators A Phys 261:177–183CrossRef
3.
go back to reference Cobo A, Sheybani R, Tu H, Meng E (2016) A wireless implantable micropump for chronic drug infusion against cancer. Sens Actuators A Phys 239:18–25CrossRef Cobo A, Sheybani R, Tu H, Meng E (2016) A wireless implantable micropump for chronic drug infusion against cancer. Sens Actuators A Phys 239:18–25CrossRef
4.
go back to reference Li Y, Duc HLH, Tyler B, Williams T, Tupper M, Langer R, Cima MJ (2005) In vivo delivery of BCNU from a MEMS device to a tumor model. J Control Release 106(1):138–145CrossRef Li Y, Duc HLH, Tyler B, Williams T, Tupper M, Langer R, Cima MJ (2005) In vivo delivery of BCNU from a MEMS device to a tumor model. J Control Release 106(1):138–145CrossRef
5.
go back to reference Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevice 11(5):959–970CrossRef Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevice 11(5):959–970CrossRef
6.
go back to reference Li PY, Sheybani R, Gutierrez CA, Kuo JT, Meng E (2010) A parylene bellows electrochemical actuator. J Microelectromech Syst 19(1):215–228CrossRef Li PY, Sheybani R, Gutierrez CA, Kuo JT, Meng E (2010) A parylene bellows electrochemical actuator. J Microelectromech Syst 19(1):215–228CrossRef
7.
go back to reference Sheybani R, Meng E (2012) High-efficiency MEMS electrochemical actuators and electrochemical impedance spectroscopy characterization. J Microelectromech Syst 21(5):1197–1208CrossRef Sheybani R, Meng E (2012) High-efficiency MEMS electrochemical actuators and electrochemical impedance spectroscopy characterization. J Microelectromech Syst 21(5):1197–1208CrossRef
8.
go back to reference Gensler H, Sheybani R, Li PY, Mann RL, Meng E (2012) An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices 14(3):483–496CrossRef Gensler H, Sheybani R, Li PY, Mann RL, Meng E (2012) An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices 14(3):483–496CrossRef
9.
go back to reference Yi Y, Buttner U, Fan Y, Foulds IG (2015) Design and optimization of a 3-coil resonance-based wireless power transfer system for biomedical implants. Int J Circuit Theory Appl 43(10):1379–1390CrossRef Yi Y, Buttner U, Fan Y, Foulds IG (2015) Design and optimization of a 3-coil resonance-based wireless power transfer system for biomedical implants. Int J Circuit Theory Appl 43(10):1379–1390CrossRef
10.
go back to reference Nazly PF, Jackson JK, Burt HM, Chiao M (2011) A magnetically controlled MEMS device for drug delivery: design, fabrication, and testing. Lab Chip 11(18):3072–3080CrossRef Nazly PF, Jackson JK, Burt HM, Chiao M (2011) A magnetically controlled MEMS device for drug delivery: design, fabrication, and testing. Lab Chip 11(18):3072–3080CrossRef
11.
go back to reference Nazly PF, Jackson JK, Burt HM, Chiao M (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752CrossRef Nazly PF, Jackson JK, Burt HM, Chiao M (2011) On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 11(16):2744–2752CrossRef
12.
go back to reference Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39CrossRef Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39CrossRef
13.
go back to reference Fu C, Rummler Z, Schomburg W (2003) Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J Micromech Microeng 13(4):96–102CrossRef Fu C, Rummler Z, Schomburg W (2003) Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J Micromech Microeng 13(4):96–102CrossRef
14.
go back to reference Choi JW, Oh KW, Han A, Wijayawardhana CA, Lannes C, Bhansali S, Helmicki AJ (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3(3):191–200CrossRef Choi JW, Oh KW, Han A, Wijayawardhana CA, Lannes C, Bhansali S, Helmicki AJ (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3(3):191–200CrossRef
16.
go back to reference van der Wijngaart W, Ask H, Enoksson P, Stemme G (2002) A high-stroke, high-pressure electrostatic actuator for valve applications. Sens Actuators A Phys 100(2):264–271CrossRef van der Wijngaart W, Ask H, Enoksson P, Stemme G (2002) A high-stroke, high-pressure electrostatic actuator for valve applications. Sens Actuators A Phys 100(2):264–271CrossRef
17.
go back to reference Li HQ, Roberts DC, Steyn JL, Turner KT, Yaglioglu O, Hagood NW, Schmidt MA (2004) Fabrication of a high frequency piezoelectric microvalve. Sens Actuators A Phys 111(1):51–56CrossRef Li HQ, Roberts DC, Steyn JL, Turner KT, Yaglioglu O, Hagood NW, Schmidt MA (2004) Fabrication of a high frequency piezoelectric microvalve. Sens Actuators A Phys 111(1):51–56CrossRef
18.
go back to reference Goettsche T, Kohnle J, Willmann M, Ernst H, Spieth S, Tischler R, Sandmaier H (2005) Novel approaches to particle tolerant valves for use in drug delivery systems. Sens Actuators A Phys 118(1):70–77CrossRef Goettsche T, Kohnle J, Willmann M, Ernst H, Spieth S, Tischler R, Sandmaier H (2005) Novel approaches to particle tolerant valves for use in drug delivery systems. Sens Actuators A Phys 118(1):70–77CrossRef
19.
go back to reference Kohl M, Skrobanek KD, Miyazaki S (1999) Development of stress-optimised shape memory microvalves. Sens Actuators A Phys 72(3):243–250CrossRef Kohl M, Skrobanek KD, Miyazaki S (1999) Development of stress-optimised shape memory microvalves. Sens Actuators A Phys 72(3):243–250CrossRef
20.
go back to reference Goll C, Bacher W, Büstgens B, Maas D, Menz W, Schomburg WK (1996) Microvalves with bistable buckled polymer diaphragms. J Micromech Microeng 6(1):77–79CrossRef Goll C, Bacher W, Büstgens B, Maas D, Menz W, Schomburg WK (1996) Microvalves with bistable buckled polymer diaphragms. J Micromech Microeng 6(1):77–79CrossRef
21.
go back to reference Schomburg WK, Goll C (1998) Design optimization of bistable microdiaphragm valves. Sens Actuators A Phys 64(3):259–264CrossRef Schomburg WK, Goll C (1998) Design optimization of bistable microdiaphragm valves. Sens Actuators A Phys 64(3):259–264CrossRef
22.
go back to reference Yoshida K, Kikuchi M, Park JH, Yokota S (2002) Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sens Actuators A Phys 95(2):227–233CrossRef Yoshida K, Kikuchi M, Park JH, Yokota S (2002) Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sens Actuators A Phys 95(2):227–233CrossRef
23.
go back to reference Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sensors Actuators B Chem 96(1):38–45CrossRef Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sensors Actuators B Chem 96(1):38–45CrossRef
24.
go back to reference Liu TY, Hu SH, Liu DM, Chen SY, Chen IW (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4(1):52–65CrossRef Liu TY, Hu SH, Liu DM, Chen SY, Chen IW (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4(1):52–65CrossRef
25.
go back to reference Beebe DJ, Moore JS, Bauer JM, Yu Q (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590CrossRef Beebe DJ, Moore JS, Bauer JM, Yu Q (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590CrossRef
27.
go back to reference Yi Y, Buttner U, Foulds IG Towards an implantable pulsed mode electrolytic drug delivery system. In: Proceedings of the international conference on miniaturized systems for chemistry and life sciences (MicroTAS 2013), 27–31 October 2013 Yi Y, Buttner U, Foulds IG Towards an implantable pulsed mode electrolytic drug delivery system. In: Proceedings of the international conference on miniaturized systems for chemistry and life sciences (MicroTAS 2013), 27–31 October 2013
28.
go back to reference Yi Y, Buttner U, Foulds IG (2015) A cyclically actuated electrolytic drug delivery device. Lab Chip 15(17):3540–3548CrossRef Yi Y, Buttner U, Foulds IG (2015) A cyclically actuated electrolytic drug delivery device. Lab Chip 15(17):3540–3548CrossRef
30.
go back to reference Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D (2015) Gas Permeation through Nafion. Part 1: measurements. J Phys Chem C 119:25145–25155CrossRef Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D (2015) Gas Permeation through Nafion. Part 1: measurements. J Phys Chem C 119:25145–25155CrossRef
31.
go back to reference Dai Z, Möhwald H (2002) Highly stable and biocompatible nafion-based capsules with controlled permeability for low-molecular-weight species. Chem A Eur J 8:4751–4755CrossRef Dai Z, Möhwald H (2002) Highly stable and biocompatible nafion-based capsules with controlled permeability for low-molecular-weight species. Chem A Eur J 8:4751–4755CrossRef
32.
go back to reference Kim H, Kang M-S, Lee DH, Won J, Kim J, Kang YS (2007) Proton exchange membranes with high cell performance based on Nafion/poly (p-phenylene vinylene) composite polymer electrolyte. J Membr Sci 304:60–64CrossRef Kim H, Kang M-S, Lee DH, Won J, Kim J, Kang YS (2007) Proton exchange membranes with high cell performance based on Nafion/poly (p-phenylene vinylene) composite polymer electrolyte. J Membr Sci 304:60–64CrossRef
33.
go back to reference Pan Y, Bao H, Sahoo NG, Wu T, Li L (2011) Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv Func Mater 21(14):2754–2763CrossRef Pan Y, Bao H, Sahoo NG, Wu T, Li L (2011) Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv Func Mater 21(14):2754–2763CrossRef
34.
go back to reference Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen I-W (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4:52–65CrossRef Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen I-W (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4:52–65CrossRef
35.
go back to reference Hsiue G-H, Chang R-W, Wang C-H, Lee S-H (2003) Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 24:2423–2430CrossRef Hsiue G-H, Chang R-W, Wang C-H, Lee S-H (2003) Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 24:2423–2430CrossRef
36.
go back to reference Yi Y, Zaher A, Yassine O, Buttner U, Kosel J, Foulds IG (2015) Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery. In: IEEE 10th international conference on nano/micro engineered and molecular systems (NEMS 2015), pp. 5–8, April 2015 Yi Y, Zaher A, Yassine O, Buttner U, Kosel J, Foulds IG (2015) Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery. In: IEEE 10th international conference on nano/micro engineered and molecular systems (NEMS 2015), pp. 5–8, April 2015
37.
go back to reference Goodenough JB (2002) Summary of losses in magnetic materials. IEEE Trans Magn 38:3398–3408CrossRef Goodenough JB (2002) Summary of losses in magnetic materials. IEEE Trans Magn 38:3398–3408CrossRef
39.
go back to reference van der Linden H, Olthuis W, Bergveld P (2004) An efficient method for the fabrication of temperature-sensitive hydrogel microactuators. Lab Chip 4(6):619–624CrossRef van der Linden H, Olthuis W, Bergveld P (2004) An efficient method for the fabrication of temperature-sensitive hydrogel microactuators. Lab Chip 4(6):619–624CrossRef
Metadata
Title
Flexible substrate-based thermo-responsive valve applied in electromagnetically powered drug delivery system
Authors
Ying Yi
Ruining Huang
Changping Li
Publication date
09-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3083-9

Other articles of this Issue 4/2019

Journal of Materials Science 4/2019 Go to the issue

Premium Partners