Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2018

08-11-2017 | RESEARCH PAPER

Form-finding of grid-shells using the ground structure and potential energy methods: a comparative study and assessment

Authors: Yang Jiang, Tomás Zegard, William F. Baker, Glaucio H. Paulino

Published in: Structural and Multidisciplinary Optimization | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structural performance of a grid-shell depends directly on the geometry of the design. Form-finding methods, which are typically based on the search for bending-free configurations, aid in achieving structurally efficient geometries. This manuscript proposes two form-finding methods for grid-shells: one method is the potential energy method, which finds the form in equilibrium by minimizing the total potential energy in the system; the second method is based on an augmented version of the ground structure method, in which the load application points become variables of the topology optimization problem. The proposed methods, together with the well-known force density method, are evaluated and compared using numerical examples. The advantages and drawbacks of the methods are reviewed, compared and highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Minor concavities can be handled, but are generally not advised since they may introduce structural instabilities in the node–bar network.
 
2
Each inner member forms the edge of 2 load panels while each boundary members forms the edge of 1 load panel.
 
3
The load could depend on the displacements or the cross-sections, but because the displacements are small, they are assumed constant for the sake of simplicity.
 
4
Considering the material’s yield limit, and optionally including considerations for buckling or other criteria.
 
5
There are two common versions of the GSM: one based on the plastic formulation, and one based on the elastic formulation. Only the plastic formulation can be formulated as a linear programming problem. The elastic formulation (Bendsøe et al., 1994; Christensen and Klarbring 2009; Ramos and Paulino 2015), despite being computationally more expensive, considers compatibility and can include material and geometric non-linearities to name a few features. The present work uses the plastic formulation in the form-finding process.
 
6
Refer to Zegard and Paulino (2014) for details on the effect of the collinear tolerance on the ground structure generation process.
 
Literature
go back to reference ACI Committee 318, American Concrete Institute (2014) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14) ACI Committee 318, American Concrete Institute (2014) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)
go back to reference Addis B (2007) Building: 3000 years of design, engineering and construction. Phaidon Press, London Addis B (2007) Building: 3000 years of design, engineering and construction. Phaidon Press, London
go back to reference Akbarzadeh M, Van Mele T, Block P (2015) Spatial compression-only form finding through subdivision of external force polyhedron. In: Proceedings of the international association for shell and spatial structures (IASS). Symposium, Amsterdam Akbarzadeh M, Van Mele T, Block P (2015) Spatial compression-only form finding through subdivision of external force polyhedron. In: Proceedings of the international association for shell and spatial structures (IASS). Symposium, Amsterdam
go back to reference American Institute of Steel Construction (2011) Steel Construction Manual. 14th Edn American Institute of Steel Construction (2011) Steel Construction Manual. 14th Edn
go back to reference Argyris JH, Angelopoulos T, Bichat B (1974) A general method for the shape finding of lightweight tension structures. Comput Methods Appl Mech Eng 3:135–149CrossRef Argyris JH, Angelopoulos T, Bichat B (1974) A general method for the shape finding of lightweight tension structures. Comput Methods Appl Mech Eng 3:135–149CrossRef
go back to reference Baker WF (1992) Energy-based design of lateral systems. Struct Eng Int 2(2):99–102CrossRef Baker WF (1992) Energy-based design of lateral systems. Struct Eng Int 2(2):99–102CrossRef
go back to reference Baker WF, Beghini LL, Mazurek A, Carrion J, Beghini A (2013) Maxwell’s reciprocal diagrams and discrete Michell frames. Struct Multidiscip Optim 48:267–277MathSciNetCrossRef Baker WF, Beghini LL, Mazurek A, Carrion J, Beghini A (2013) Maxwell’s reciprocal diagrams and discrete Michell frames. Struct Multidiscip Optim 48:267–277MathSciNetCrossRef
go back to reference Barnes MR (1977) Form-finding and analysis of tension space structures by dynamic relaxation. PhD Thesis, City University London Barnes MR (1977) Form-finding and analysis of tension space structures by dynamic relaxation. PhD Thesis, City University London
go back to reference Barnes MR, Topping BHV, Wakefield DS (1977) Aspects of form-finding by dynamic relaxation. In: International conference on the behaviour of slender structures Barnes MR, Topping BHV, Wakefield DS (1977) Aspects of form-finding by dynamic relaxation. In: International conference on the behaviour of slender structures
go back to reference Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Multidiscip Optim 7(3):141–159CrossRef Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Multidiscip Optim 7(3):141–159CrossRef
go back to reference Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH
go back to reference Bergós J, Llimargas M (1999) Gaudí: The Man and His Work. Taschen, Köln Bergós J, Llimargas M (1999) Gaudí: The Man and His Work. Taschen, Köln
go back to reference Bletzinger K-U, Ramm E (1993) Form finding of shells by structural optimization. Eng Comput 9(1):27–35CrossRef Bletzinger K-U, Ramm E (1993) Form finding of shells by structural optimization. Eng Comput 9(1):27–35CrossRef
go back to reference Bletzinger K-U, Ramm E (1999) A general finite element approach to the form finding of tensile structures by the upyeard reference strategy. Int J Space Struct 14(2):131–145CrossRef Bletzinger K-U, Ramm E (1999) A general finite element approach to the form finding of tensile structures by the upyeard reference strategy. Int J Space Struct 14(2):131–145CrossRef
go back to reference Bletzinger K-U, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22):2053–2062CrossRef Bletzinger K-U, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22):2053–2062CrossRef
go back to reference Bletzinger K-U, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194(30):3438–3452MathSciNetCrossRefMATH Bletzinger K-U, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194(30):3438–3452MathSciNetCrossRefMATH
go back to reference Block P (2009) Thrust network analysis: exploring three-dimensional equilibrium. PhD thesis, Massachusetts Institute of Technology, USA Block P (2009) Thrust network analysis: exploring three-dimensional equilibrium. PhD thesis, Massachusetts Institute of Technology, USA
go back to reference Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. J Intern Assoc Shell Spatial Struct 48(3):167–173 Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. J Intern Assoc Shell Spatial Struct 48(3):167–173
go back to reference Chiandussi G, Codegone M, Ferrero S (2009) Topology optimization with optimality criteria and transmissible loads. Comput Math Appl 57(5):772–788MathSciNetCrossRefMATH Chiandussi G, Codegone M, Ferrero S (2009) Topology optimization with optimality criteria and transmissible loads. Comput Math Appl 57(5):772–788MathSciNetCrossRefMATH
go back to reference Chilton J (2010) Heinz Isler’s infinite spectrum form-finding in design. Archit Des 80(4):64–71 Chilton J (2010) Heinz Isler’s infinite spectrum form-finding in design. Archit Des 80(4):64–71
go back to reference Christensen PW, Klarbring A (2009) An introduction to structural optimization, vol 153 of solid mechanics and its applications. Springer Netherlands, Dordrecht Christensen PW, Klarbring A (2009) An introduction to structural optimization, vol 153 of solid mechanics and its applications. Springer Netherlands, Dordrecht
go back to reference Coelho RF, Tysmans T, Verwimp E (2014) Form finding & structural optimization. Struct Multidiscip Optim 49(6):1037–1046CrossRef Coelho RF, Tysmans T, Verwimp E (2014) Form finding & structural optimization. Struct Multidiscip Optim 49(6):1037–1046CrossRef
go back to reference Collins GR (1977) The Drawings of Antonio gaudí. The drawing center, New York Collins GR (1977) The Drawings of Antonio gaudí. The drawing center, New York
go back to reference Darwich W, Gilbert M, Tyas A (2010) Optimum structure to carry a uniform load between pinned supports. Struct Multidiscip Optim 42(1):33–42CrossRef Darwich W, Gilbert M, Tyas A (2010) Optimum structure to carry a uniform load between pinned supports. Struct Multidiscip Optim 42(1):33–42CrossRef
go back to reference Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J de mécanique 3 (1):25–52 Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J de mécanique 3 (1):25–52
go back to reference Fuchs MB, Moses E (2000) Optimal structural topologies with transmissible loads. Struct Multidiscip Optim 19(4):263– 273CrossRef Fuchs MB, Moses E (2000) Optimal structural topologies with transmissible loads. Struct Multidiscip Optim 19(4):263– 273CrossRef
go back to reference Gallagher RH, Zienkiewicz OC (1973) Optimum structural design: theory and applications. Wiley, LondonMATH Gallagher RH, Zienkiewicz OC (1973) Optimum structural design: theory and applications. Wiley, LondonMATH
go back to reference Gilbert M, Darwich W, Tyas A, Shepherd P (2005) Application of large-scale layout optimization techniques in structural engineering practice. In: 6th world congress of structural and multidisciplinary optimization, June 1–10 Gilbert M, Darwich W, Tyas A, Shepherd P (2005) Application of large-scale layout optimization techniques in structural engineering practice. In: 6th world congress of structural and multidisciplinary optimization, June 1–10
go back to reference Haber R, Abel J (1982) Initial equilibrium solution methods for cable reinforced membranes part I-formulations. Comput Methods Appl Mech Eng 30(3):263–284CrossRefMATH Haber R, Abel J (1982) Initial equilibrium solution methods for cable reinforced membranes part I-formulations. Comput Methods Appl Mech Eng 30(3):263–284CrossRefMATH
go back to reference Hemp W (1973) Optimum structures, 1st edn. Oxford University Press, Oxford Hemp W (1973) Optimum structures, 1st edn. Oxford University Press, Oxford
go back to reference International Code Council (2015) 2015 International Building Code International Code Council (2015) 2015 International Building Code
go back to reference Jiang Y (2015) Free form finding of grid shell structures. Master’s thesis, University of Illinois at Urbana-Champaign, USA Jiang Y (2015) Free form finding of grid shell structures. Master’s thesis, University of Illinois at Urbana-Champaign, USA
go back to reference Kilian A, Ochsendorf J (2006) Particle spring systems for structural form finding. J Intern Assoc Shell Spatial Struct 46(2):77– 84 Kilian A, Ochsendorf J (2006) Particle spring systems for structural form finding. J Intern Assoc Shell Spatial Struct 46(2):77– 84
go back to reference Leon SE, Paulino GH, Pereira A, Menezes IFM, Lages EN (2011) A unified library of nonlinear solution schemes. Appl Mech Rev 64(4):040803CrossRef Leon SE, Paulino GH, Pereira A, Menezes IFM, Lages EN (2011) A unified library of nonlinear solution schemes. Appl Mech Rev 64(4):040803CrossRef
go back to reference Lewiński T, Rozvany GIN, Sokół T, Bołbotowski K (2013) Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains revisited. Struct Multidiscip Optim 47 (6):937–942MathSciNetCrossRefMATH Lewiński T, Rozvany GIN, Sokół T, Bołbotowski K (2013) Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains revisited. Struct Multidiscip Optim 47 (6):937–942MathSciNetCrossRefMATH
go back to reference Lewiński T, Zhou M, Rozvany GIN (1994) Extended exact solutions for least-weight truss layouts—Part I: cantilever with a horizontal axis of symmetry. Int J Mech Sci 36(5):375–398CrossRefMATH Lewiński T, Zhou M, Rozvany GIN (1994) Extended exact solutions for least-weight truss layouts—Part I: cantilever with a horizontal axis of symmetry. Int J Mech Sci 36(5):375–398CrossRefMATH
go back to reference Lewis WJ (2003) Tension structures: form and behaviour. Thomas Telford Publishing, LondonCrossRef Lewis WJ (2003) Tension structures: form and behaviour. Thomas Telford Publishing, LondonCrossRef
go back to reference Linkwitz K, Schek H (1971) Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen. Ingenieur-Archiv 40(3):145–158CrossRef Linkwitz K, Schek H (1971) Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen. Ingenieur-Archiv 40(3):145–158CrossRef
go back to reference Martinell C, Collins GR, Rohrer J (1975) Gaudí: his life, his theories, his work. MIT Press, Cambridge Martinell C, Collins GR, Rohrer J (1975) Gaudí: his life, his theories, his work. MIT Press, Cambridge
go back to reference Maxwell JC (1890) In: Niven WD (ed) The scientific papers of James Clerk Maxwell. Library Collection, Cambridge Maxwell JC (1890) In: Niven WD (ed) The scientific papers of James Clerk Maxwell. Library Collection, Cambridge
go back to reference Michell A (1904) The limits of economy of material in frame structures. Phil Mag 8(47):589–597CrossRefMATH Michell A (1904) The limits of economy of material in frame structures. Phil Mag 8(47):589–597CrossRefMATH
go back to reference Miki M, Adriaenssens S, Igarashi T, Kawaguchi K (2014) The geodesic dynamic relaxation method for problems of equilibrium with equality constraint conditions. Int J Numer Methods Eng 99:682–710MathSciNetCrossRefMATH Miki M, Adriaenssens S, Igarashi T, Kawaguchi K (2014) The geodesic dynamic relaxation method for problems of equilibrium with equality constraint conditions. Int J Numer Methods Eng 99:682–710MathSciNetCrossRefMATH
go back to reference Mitchell T (2013) A limit of eonomy of material in shell structures. PhD thesis, University of California Berkeley, USA Mitchell T (2013) A limit of eonomy of material in shell structures. PhD thesis, University of California Berkeley, USA
go back to reference Nouri-Baranger T (2004) Computational methods for tension-loaded structures. Arch Comput Meth Eng 11 (2003):143– 186CrossRefMATH Nouri-Baranger T (2004) Computational methods for tension-loaded structures. Arch Comput Meth Eng 11 (2003):143– 186CrossRefMATH
go back to reference Pauletti RMO, Pimenta PM (2008) The natural force density method for the shape finding of taut structures. Comput Methods Appl Mech Eng 197(49):4419–4428CrossRefMATH Pauletti RMO, Pimenta PM (2008) The natural force density method for the shape finding of taut structures. Comput Methods Appl Mech Eng 197(49):4419–4428CrossRefMATH
go back to reference Pichugin A, Tyas A, Gilbert M (2012) On the optimality of Hemp’s arch with vertical hangers. Struct Multidiscip Optim 46(1):17– 25MathSciNetCrossRefMATH Pichugin A, Tyas A, Gilbert M (2012) On the optimality of Hemp’s arch with vertical hangers. Struct Multidiscip Optim 46(1):17– 25MathSciNetCrossRefMATH
go back to reference Ramos AS, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51(2):287–304MathSciNetCrossRef Ramos AS, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51(2):287–304MathSciNetCrossRef
go back to reference Richardson JN, Adriaenssens S, Coelho RF, Bouillard P (2013) Coupled form-finding and grid optimization approach for single layer grid shells. Eng Struct 52:230–239CrossRef Richardson JN, Adriaenssens S, Coelho RF, Bouillard P (2013) Coupled form-finding and grid optimization approach for single layer grid shells. Eng Struct 52:230–239CrossRef
go back to reference Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidiscip Optim 21 (2):164–172MathSciNetCrossRef Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidiscip Optim 21 (2):164–172MathSciNetCrossRef
go back to reference Rozvany GIN, Gollub W, Zhou M (1997) Exact Michell layouts for various combinations of line supports-Part II. Struct Optim 14(2-3):138–149CrossRef Rozvany GIN, Gollub W, Zhou M (1997) Exact Michell layouts for various combinations of line supports-Part II. Struct Optim 14(2-3):138–149CrossRef
go back to reference Rozvany GIN, Prager W (1979) A new class of structural optimization problems: optimal archgrids. Comput Methods Appl Mech Eng 19(1):127–150MathSciNetCrossRefMATH Rozvany GIN, Prager W (1979) A new class of structural optimization problems: optimal archgrids. Comput Methods Appl Mech Eng 19(1):127–150MathSciNetCrossRefMATH
go back to reference Rozvany GIN, Sokół T (2013) Validation of numerical methods by analytical benchmarks, and verification of exact solutions by numerical methods. Topology Optimization in Structural and Continuum Mechanics Rozvany GIN, Sokół T (2013) Validation of numerical methods by analytical benchmarks, and verification of exact solutions by numerical methods. Topology Optimization in Structural and Continuum Mechanics
go back to reference Rozvany GIN, Wang CM, Dow M (1982) Prager-structures: Archgrids and cable networks of optimal layout. Comput Methods Appl Mech Eng 31(1):91–113MathSciNetCrossRefMATH Rozvany GIN, Wang CM, Dow M (1982) Prager-structures: Archgrids and cable networks of optimal layout. Comput Methods Appl Mech Eng 31(1):91–113MathSciNetCrossRefMATH
go back to reference Sánchez J, Serna MÁ, Morer P (2007) A multi-step force–density method and surface-fitting approach for the preliminary shape design of tensile structures. Eng Struct 29(8):1966– 1976CrossRef Sánchez J, Serna MÁ, Morer P (2007) A multi-step force–density method and surface-fitting approach for the preliminary shape design of tensile structures. Eng Struct 29(8):1966– 1976CrossRef
go back to reference Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134MathSciNetCrossRef Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134MathSciNetCrossRef
go back to reference Siev A, Eidelman J (1964) Stress analysis of prestressed suspended roofs. J Struct Div 90(4):103–122 Siev A, Eidelman J (1964) Stress analysis of prestressed suspended roofs. J Struct Div 90(4):103–122
go back to reference Sokół T (2011) A 99 line code for discretized Michell truss optimization written in Mathematica. Struct Multidiscip Optim 43(2):181–190CrossRefMATH Sokół T (2011) A 99 line code for discretized Michell truss optimization written in Mathematica. Struct Multidiscip Optim 43(2):181–190CrossRefMATH
go back to reference Sokół T (2014) Multi-load truss topology optimization using the adaptive ground structure approach. In: Łodygowski T, Rakowski J, Litewka P (eds) Recent advances in computational mechanics. CRC Press, Boca Raton, pp 9–16 Sokół T (2014) Multi-load truss topology optimization using the adaptive ground structure approach. In: Łodygowski T, Rakowski J, Litewka P (eds) Recent advances in computational mechanics. CRC Press, Boca Raton, pp 9–16
go back to reference Sokół T, Rozvany GIN (2013) On the adaptive ground structure approach for the multi-load truss topology optimization. In: 10th world congress on structural and multidisciplinary optimization, pp 1–10 Sokół T, Rozvany GIN (2013) On the adaptive ground structure approach for the multi-load truss topology optimization. In: 10th world congress on structural and multidisciplinary optimization, pp 1–10
go back to reference Tabarrok B, Qin Z (1992) Nonlinear analysis of tension structures. Comput Struct 45(5):973–984CrossRefMATH Tabarrok B, Qin Z (1992) Nonlinear analysis of tension structures. Comput Struct 45(5):973–984CrossRefMATH
go back to reference Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45:309–328MathSciNetCrossRefMATH Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45:309–328MathSciNetCrossRefMATH
go back to reference Thrall AP, Billington DP, Bréa KL (2012) The Maria Pia Bridge: A major work of structural art. Eng Struct 40:479–486CrossRef Thrall AP, Billington DP, Bréa KL (2012) The Maria Pia Bridge: A major work of structural art. Eng Struct 40:479–486CrossRef
go back to reference Tyas A, Pichugin AV, Gilbert M (2010) Optimum structure to carry a uniform load between pinned supports: exact analytical solution. Proc R Soc A Math Phys Eng sciences 467(2128):1101–1120MathSciNetCrossRefMATH Tyas A, Pichugin AV, Gilbert M (2010) Optimum structure to carry a uniform load between pinned supports: exact analytical solution. Proc R Soc A Math Phys Eng sciences 467(2128):1101–1120MathSciNetCrossRefMATH
go back to reference Veenendaal D, Block P (2012) An overview and comparison of structural form finding methods for general networks. Int J Solids Struct 49(26):3741–3753CrossRef Veenendaal D, Block P (2012) An overview and comparison of structural form finding methods for general networks. Int J Solids Struct 49(26):3741–3753CrossRef
go back to reference Wang CM, Rozvany GIN (1983) On plane prager-structures—II: non-parallel external loads and allowances for selfweight. Int J Mech Sci 25(7):529–541CrossRefMATH Wang CM, Rozvany GIN (1983) On plane prager-structures—II: non-parallel external loads and allowances for selfweight. Int J Mech Sci 25(7):529–541CrossRefMATH
go back to reference Wright M (2004) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(01):39–56MathSciNetCrossRefMATH Wright M (2004) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(01):39–56MathSciNetCrossRefMATH
go back to reference Yang XY, Xie YM, Steven GP (2005) Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Comput Struct 83(12-13):956–963CrossRef Yang XY, Xie YM, Steven GP (2005) Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Comput Struct 83(12-13):956–963CrossRef
go back to reference Zalewski W, Allen E (1997) Shaping structures: statics. Wiley, New York Zalewski W, Allen E (1997) Shaping structures: statics. Wiley, New York
go back to reference Zegard T (2014) Structural optimization: from continuum and ground structures to additive manufacturing. PhD thesis, University of Illinois at Urbana-Champaign, USA Zegard T (2014) Structural optimization: from continuum and ground structures to additive manufacturing. PhD thesis, University of Illinois at Urbana-Champaign, USA
go back to reference Zegard T, Paulino GH (2014) GRAND — Ground Structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidiscip Optim 50(5):861–882MathSciNetCrossRef Zegard T, Paulino GH (2014) GRAND — Ground Structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidiscip Optim 50(5):861–882MathSciNetCrossRef
go back to reference Zegard T, Paulino GH (2015) GRAND3 — Ground Structure based topology optimization for arbitrary 3D domains using MATLAB. Struct Multidiscip Optim 52(6):1161–1184CrossRef Zegard T, Paulino GH (2015) GRAND3 — Ground Structure based topology optimization for arbitrary 3D domains using MATLAB. Struct Multidiscip Optim 52(6):1161–1184CrossRef
go back to reference Zhang Y (1996a) Solving large-scale linear programs by interior-point methods under the MATLAB Environment. Technical report, Department of Mathematics and Statistics University of Maryland, Baltimore, USA Zhang Y (1996a) Solving large-scale linear programs by interior-point methods under the MATLAB Environment. Technical report, Department of Mathematics and Statistics University of Maryland, Baltimore, USA
go back to reference Zhang Y (1996b) Solving large-scale linear programs by interior-point methods under the Matlab Environment. Optim Methods Softw 10(1):1–31 Zhang Y (1996b) Solving large-scale linear programs by interior-point methods under the Matlab Environment. Optim Methods Softw 10(1):1–31
Metadata
Title
Form-finding of grid-shells using the ground structure and potential energy methods: a comparative study and assessment
Authors
Yang Jiang
Tomás Zegard
William F. Baker
Glaucio H. Paulino
Publication date
08-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 3/2018
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1804-3

Other articles of this Issue 3/2018

Structural and Multidisciplinary Optimization 3/2018 Go to the issue

Premium Partners