Skip to main content
Top
Published in: Engineering with Computers 4/2020

07-05-2019 | Original Article

Formulation and evaluation of a new four-node quadrilateral element for analysis of the shell structures

Authors: Hosein Sangtarash, Hamed Ghohani Arab, Mohammad Reza Sohrabi, Mohammad Reza Ghasemi

Published in: Engineering with Computers | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shell structures are lightweight constructions which are extensively used by engineering. Due to this reason presenting an appropriate shell element for analysis of these structures has become an interesting issue in recent decades. This study presents a new rectangular flat shell element called ACM-SQ4 obtained by combining bending and membrane elements. The bending element is a well-known plate bending element called ACM which is based on the classical thin-plate theory and the membrane element is an unsymmetric quadrilateral element called US-Q4θ, the test function of this element is improved by the Allman-type drilling DOFs and a rational stress field is used as the element’s trial function. Finally, some numerical benchmark problems are used to evaluate the performance of the proposed flat shell element. The obtained results show that despite its simple formulation, the proposed element has reasonable accuracy and acceptable convergence in comparison with other shell elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Chapelle D, Bathe KJ (2010) The finite element analysis of shells-fundamentals, 2nd edn. Springer, Science & Business Media, New YorkMATH Chapelle D, Bathe KJ (2010) The finite element analysis of shells-fundamentals, 2nd edn. Springer, Science & Business Media, New YorkMATH
2.
go back to reference Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47:537–556MathSciNetMATH Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47:537–556MathSciNetMATH
3.
go back to reference Nguyen-Hoang S, Phung-Van P, Natarajan S, Kim HG (2016) A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng Comput 32:267–284 Nguyen-Hoang S, Phung-Van P, Natarajan S, Kim HG (2016) A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng Comput 32:267–284
4.
go back to reference Hernández E, Spa C, Surriba S (2018) A non-standard finite element method for dynamical behavior of cylindrical classical shell model. Meccanica 53:1037–1048MathSciNetMATH Hernández E, Spa C, Surriba S (2018) A non-standard finite element method for dynamical behavior of cylindrical classical shell model. Meccanica 53:1037–1048MathSciNetMATH
5.
go back to reference Yuqi L, Jincheng W, Ping H (2002) A finite element analysis of the flange earrings of strong anisotropic sheet metals in deep-drawing processes. Acta Mech Sin 18:82–91 Yuqi L, Jincheng W, Ping H (2002) A finite element analysis of the flange earrings of strong anisotropic sheet metals in deep-drawing processes. Acta Mech Sin 18:82–91
6.
go back to reference Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London
7.
go back to reference Stolarski H, Belytschko T, Carpenter N, Kennedy JM (1984) A simple triangular curved shell element. Eng Comput 1:210–218 Stolarski H, Belytschko T, Carpenter N, Kennedy JM (1984) A simple triangular curved shell element. Eng Comput 1:210–218
8.
go back to reference Surana KS (1982) Geometrically nonlinear formulation for the axisymmetric shell elements. Int J Numer Methods Eng 18:477–502MathSciNetMATH Surana KS (1982) Geometrically nonlinear formulation for the axisymmetric shell elements. Int J Numer Methods Eng 18:477–502MathSciNetMATH
9.
go back to reference Li LM, Li DY, Peng YH (2011) The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method. Eng Comput 27:273–284 Li LM, Li DY, Peng YH (2011) The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method. Eng Comput 27:273–284
10.
go back to reference Gallagher RH (1976) Problems and progresses in thin shell finite element analysis. In: Ashwell DG, Gallagher RH (eds) Finite element for thin shells and curved members. Wiley, New York Gallagher RH (1976) Problems and progresses in thin shell finite element analysis. In: Ashwell DG, Gallagher RH (eds) Finite element for thin shells and curved members. Wiley, New York
11.
go back to reference Batoz JL, Hammadi F, Zheng C, Zhong W (2000) On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Comput Struct 78:11–20 Batoz JL, Hammadi F, Zheng C, Zhong W (2000) On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Comput Struct 78:11–20
12.
go back to reference Batoz JL, Zheng CL, Hammadi F (2001) Formulation and evaluation of new triangular, quadrilateral, pentagonal and hexagonal discrete Kirchhoff plate/shell elements. Int J Numer Methods Eng 52:615–630MathSciNetMATH Batoz JL, Zheng CL, Hammadi F (2001) Formulation and evaluation of new triangular, quadrilateral, pentagonal and hexagonal discrete Kirchhoff plate/shell elements. Int J Numer Methods Eng 52:615–630MathSciNetMATH
13.
go back to reference Zengjie G, Wanji C (2003) Refined triangular discrete Mindlin flat shell elements. Comput Mech 33:52–60MATH Zengjie G, Wanji C (2003) Refined triangular discrete Mindlin flat shell elements. Comput Mech 33:52–60MATH
14.
go back to reference Sabourin F, Carbonniere J, Brunet M (2009) A new quadrilateral shell element using 16 degrees of freedom. Eng Comput 26:500–540MATH Sabourin F, Carbonniere J, Brunet M (2009) A new quadrilateral shell element using 16 degrees of freedom. Eng Comput 26:500–540MATH
15.
go back to reference Wang Z, Sun Q (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 30:418–429MathSciNetMATH Wang Z, Sun Q (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 30:418–429MathSciNetMATH
16.
go back to reference Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Meth Eng 86:1413–1434MathSciNetMATH Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Meth Eng 86:1413–1434MathSciNetMATH
17.
go back to reference Hamadi D, Ayoub A, Abdelhafid O (2015) A new flat shell finite element for the linear analysis of thin shell structures. Eur J Comput Mech 24:232–255 Hamadi D, Ayoub A, Abdelhafid O (2015) A new flat shell finite element for the linear analysis of thin shell structures. Eur J Comput Mech 24:232–255
18.
go back to reference Shang Y, Cen S, Li CF (2016) A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements. Eng Comput 33:713–741 Shang Y, Cen S, Li CF (2016) A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements. Eng Comput 33:713–741
19.
go back to reference Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8MATH Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8MATH
20.
go back to reference Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Comput Struct 77:129–139 Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Comput Struct 77:129–139
21.
go back to reference Pimpinelli G (2004) An assumed strain quadrilateral element with drilling degrees of freedom. Finite Elem Anal Des 41:267–283 Pimpinelli G (2004) An assumed strain quadrilateral element with drilling degrees of freedom. Finite Elem Anal Des 41:267–283
22.
go back to reference Madeo A, Zagari G, Casciaro R (2012) An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem Anal Des 50:21–32 Madeo A, Zagari G, Casciaro R (2012) An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem Anal Des 50:21–32
23.
go back to reference Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195:4095–4105MATH Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195:4095–4105MATH
24.
go back to reference Rojas F, Anderson JC, Massone LM (2016) A nonlinear quadrilateral layered membrane element with drilling degrees of freedom for the modeling of reinforced concrete walls. Eng Struct 124:521–538 Rojas F, Anderson JC, Massone LM (2016) A nonlinear quadrilateral layered membrane element with drilling degrees of freedom for the modeling of reinforced concrete walls. Eng Struct 124:521–538
25.
go back to reference Nestorović T, Marinković D, Shabadi S, Trajkov M (2014) User defined finite element for modeling and analysis of active piezoelectric shell structures. Meccanica 49:1763–1774MathSciNetMATH Nestorović T, Marinković D, Shabadi S, Trajkov M (2014) User defined finite element for modeling and analysis of active piezoelectric shell structures. Meccanica 49:1763–1774MathSciNetMATH
26.
go back to reference Areias P, de Sá JC, Cardoso R (2015) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 31:691–709 Areias P, de Sá JC, Cardoso R (2015) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 31:691–709
27.
go back to reference Kim KD, Liu GZ, Han SC (2005) A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput Mech 35:315–331MATH Kim KD, Liu GZ, Han SC (2005) A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput Mech 35:315–331MATH
28.
go back to reference Li ZX, Izzuddin BA, Vu-Quoc L (2008) A 9-node co-rotational quadrilateral shell element. Comput Mech 42:873MATH Li ZX, Izzuddin BA, Vu-Quoc L (2008) A 9-node co-rotational quadrilateral shell element. Comput Mech 42:873MATH
29.
go back to reference Li Z, Xiang Y, Izzuddin BA, Vu-Quoc L, Zhuo X, Zhang C (2015) A 6-node co-rotational triangular elasto-plastic shell element. Comput Mech 55:837–859MathSciNetMATH Li Z, Xiang Y, Izzuddin BA, Vu-Quoc L, Zhuo X, Zhang C (2015) A 6-node co-rotational triangular elasto-plastic shell element. Comput Mech 55:837–859MathSciNetMATH
30.
go back to reference Shang Y, Ouyang W (2018) 4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113:1589–1606MathSciNet Shang Y, Ouyang W (2018) 4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113:1589–1606MathSciNet
31.
go back to reference Adini A, Clough RW (1961) Analysis of plate bending by the finite element method. Report to the National Science Foundation, G 7337, Arlington Adini A, Clough RW (1961) Analysis of plate bending by the finite element method. Report to the National Science Foundation, G 7337, Arlington
32.
go back to reference Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and applications of finite element analysis, vol 4. Wiley, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and applications of finite element analysis, vol 4. Wiley, New York
33.
go back to reference Timoshenko SP, Woinowsky-Krieger S (1969) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkMATH Timoshenko SP, Woinowsky-Krieger S (1969) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkMATH
34.
go back to reference Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA J 1:1631–1637 Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA J 1:1631–1637
35.
go back to reference Lee Y, Lee PS, Bathe KJ (2014) The MITC3+ shell element and its performance. Comput Struct 138:12–23 Lee Y, Lee PS, Bathe KJ (2014) The MITC3+ shell element and its performance. Comput Struct 138:12–23
36.
go back to reference Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88 Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88
37.
go back to reference Ko Y, Lee PS, Bathe KJ (2017) A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput Struct 192:34–49 Ko Y, Lee PS, Bathe KJ (2017) A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput Struct 192:34–49
38.
go back to reference Ibrahimbegović A, Frey F (1994) Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: linearized kinematics. Int J Numer Methods Eng 37:3659–3683MATH Ibrahimbegović A, Frey F (1994) Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: linearized kinematics. Int J Numer Methods Eng 37:3659–3683MATH
39.
go back to reference Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92MATH Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92MATH
40.
go back to reference Liu WK, Law ES, Lam D, Belytschko T (1986) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55:259–300MATH Liu WK, Law ES, Lam D, Belytschko T (1986) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55:259–300MATH
41.
go back to reference Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Methods Appl Mech Eng 113:321–350MATH Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Methods Appl Mech Eng 113:321–350MATH
42.
go back to reference Alves de Sousa RJ, Cardoso RP, Fontes Valente RA, Yoon JW, Grácio JJ, Natal Jorge RM (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I—geometrically linear applications. Int J Numer Meth Eng 62:952–977MATH Alves de Sousa RJ, Cardoso RP, Fontes Valente RA, Yoon JW, Grácio JJ, Natal Jorge RM (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I—geometrically linear applications. Int J Numer Meth Eng 62:952–977MATH
43.
go back to reference Wang C, Hu P, Xia Y (2012) A 4-node quasi-conforming Reissner–Mindlin shell element by using Timoshenko’s beam function. Finite Elem Anal Des 61:12–22MathSciNet Wang C, Hu P, Xia Y (2012) A 4-node quasi-conforming Reissner–Mindlin shell element by using Timoshenko’s beam function. Finite Elem Anal Des 61:12–22MathSciNet
44.
go back to reference Norachan P, Suthasupradit S, Kim KD (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85MathSciNet Norachan P, Suthasupradit S, Kim KD (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85MathSciNet
45.
go back to reference Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, César de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925MATH Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, César de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925MATH
46.
go back to reference César de Sá JM, Natal Jorge RM, Fontes Valente RA, Almeida Areias PM (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53:1721–1750MATH César de Sá JM, Natal Jorge RM, Fontes Valente RA, Almeida Areias PM (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53:1721–1750MATH
47.
go back to reference Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC shell element: theoretical and numerical investigation. Comput Methods Appl Mech Eng 182:217–245MATH Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC shell element: theoretical and numerical investigation. Comput Methods Appl Mech Eng 182:217–245MATH
48.
go back to reference Abed-Meraim F, Combescure A (2007) A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. Eur J Comput Mech 16:1037–1072MATH Abed-Meraim F, Combescure A (2007) A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. Eur J Comput Mech 16:1037–1072MATH
49.
go back to reference Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SP (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198:165–177MATH Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SP (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198:165–177MATH
50.
go back to reference Moreira RAS, Rodrigues JD (2011) A non-conforming plate facet-shell finite element with drilling stiffness. Finite Elem Anal Des 47:973–981 Moreira RAS, Rodrigues JD (2011) A non-conforming plate facet-shell finite element with drilling stiffness. Finite Elem Anal Des 47:973–981
51.
go back to reference Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36:1413–1425MATH Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36:1413–1425MATH
52.
go back to reference Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168MATH Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168MATH
53.
go back to reference Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86:71–80MathSciNet Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86:71–80MathSciNet
54.
go back to reference Timoshenko S, Goodier JN (1979) Theory of elasticity, 3rd edn. McGraw-Hill, New YorkMATH Timoshenko S, Goodier JN (1979) Theory of elasticity, 3rd edn. McGraw-Hill, New YorkMATH
55.
56.
go back to reference Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20 Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20
57.
go back to reference Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206 Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206
Metadata
Title
Formulation and evaluation of a new four-node quadrilateral element for analysis of the shell structures
Authors
Hosein Sangtarash
Hamed Ghohani Arab
Mohammad Reza Sohrabi
Mohammad Reza Ghasemi
Publication date
07-05-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2020
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00763-8

Other articles of this Issue 4/2020

Engineering with Computers 4/2020 Go to the issue