Skip to main content
Erschienen in: Engineering with Computers 4/2020

07.05.2019 | Original Article

Formulation and evaluation of a new four-node quadrilateral element for analysis of the shell structures

verfasst von: Hosein Sangtarash, Hamed Ghohani Arab, Mohammad Reza Sohrabi, Mohammad Reza Ghasemi

Erschienen in: Engineering with Computers | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shell structures are lightweight constructions which are extensively used by engineering. Due to this reason presenting an appropriate shell element for analysis of these structures has become an interesting issue in recent decades. This study presents a new rectangular flat shell element called ACM-SQ4 obtained by combining bending and membrane elements. The bending element is a well-known plate bending element called ACM which is based on the classical thin-plate theory and the membrane element is an unsymmetric quadrilateral element called US-Q4θ, the test function of this element is improved by the Allman-type drilling DOFs and a rational stress field is used as the element’s trial function. Finally, some numerical benchmark problems are used to evaluate the performance of the proposed flat shell element. The obtained results show that despite its simple formulation, the proposed element has reasonable accuracy and acceptable convergence in comparison with other shell elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chapelle D, Bathe KJ (2010) The finite element analysis of shells-fundamentals, 2nd edn. Springer, Science & Business Media, New YorkMATH Chapelle D, Bathe KJ (2010) The finite element analysis of shells-fundamentals, 2nd edn. Springer, Science & Business Media, New YorkMATH
2.
Zurück zum Zitat Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47:537–556MathSciNetMATH Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47:537–556MathSciNetMATH
3.
Zurück zum Zitat Nguyen-Hoang S, Phung-Van P, Natarajan S, Kim HG (2016) A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng Comput 32:267–284 Nguyen-Hoang S, Phung-Van P, Natarajan S, Kim HG (2016) A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng Comput 32:267–284
4.
Zurück zum Zitat Hernández E, Spa C, Surriba S (2018) A non-standard finite element method for dynamical behavior of cylindrical classical shell model. Meccanica 53:1037–1048MathSciNetMATH Hernández E, Spa C, Surriba S (2018) A non-standard finite element method for dynamical behavior of cylindrical classical shell model. Meccanica 53:1037–1048MathSciNetMATH
5.
Zurück zum Zitat Yuqi L, Jincheng W, Ping H (2002) A finite element analysis of the flange earrings of strong anisotropic sheet metals in deep-drawing processes. Acta Mech Sin 18:82–91 Yuqi L, Jincheng W, Ping H (2002) A finite element analysis of the flange earrings of strong anisotropic sheet metals in deep-drawing processes. Acta Mech Sin 18:82–91
6.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London
7.
Zurück zum Zitat Stolarski H, Belytschko T, Carpenter N, Kennedy JM (1984) A simple triangular curved shell element. Eng Comput 1:210–218 Stolarski H, Belytschko T, Carpenter N, Kennedy JM (1984) A simple triangular curved shell element. Eng Comput 1:210–218
8.
Zurück zum Zitat Surana KS (1982) Geometrically nonlinear formulation for the axisymmetric shell elements. Int J Numer Methods Eng 18:477–502MathSciNetMATH Surana KS (1982) Geometrically nonlinear formulation for the axisymmetric shell elements. Int J Numer Methods Eng 18:477–502MathSciNetMATH
9.
Zurück zum Zitat Li LM, Li DY, Peng YH (2011) The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method. Eng Comput 27:273–284 Li LM, Li DY, Peng YH (2011) The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method. Eng Comput 27:273–284
10.
Zurück zum Zitat Gallagher RH (1976) Problems and progresses in thin shell finite element analysis. In: Ashwell DG, Gallagher RH (eds) Finite element for thin shells and curved members. Wiley, New York Gallagher RH (1976) Problems and progresses in thin shell finite element analysis. In: Ashwell DG, Gallagher RH (eds) Finite element for thin shells and curved members. Wiley, New York
11.
Zurück zum Zitat Batoz JL, Hammadi F, Zheng C, Zhong W (2000) On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Comput Struct 78:11–20 Batoz JL, Hammadi F, Zheng C, Zhong W (2000) On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Comput Struct 78:11–20
12.
Zurück zum Zitat Batoz JL, Zheng CL, Hammadi F (2001) Formulation and evaluation of new triangular, quadrilateral, pentagonal and hexagonal discrete Kirchhoff plate/shell elements. Int J Numer Methods Eng 52:615–630MathSciNetMATH Batoz JL, Zheng CL, Hammadi F (2001) Formulation and evaluation of new triangular, quadrilateral, pentagonal and hexagonal discrete Kirchhoff plate/shell elements. Int J Numer Methods Eng 52:615–630MathSciNetMATH
13.
Zurück zum Zitat Zengjie G, Wanji C (2003) Refined triangular discrete Mindlin flat shell elements. Comput Mech 33:52–60MATH Zengjie G, Wanji C (2003) Refined triangular discrete Mindlin flat shell elements. Comput Mech 33:52–60MATH
14.
Zurück zum Zitat Sabourin F, Carbonniere J, Brunet M (2009) A new quadrilateral shell element using 16 degrees of freedom. Eng Comput 26:500–540MATH Sabourin F, Carbonniere J, Brunet M (2009) A new quadrilateral shell element using 16 degrees of freedom. Eng Comput 26:500–540MATH
15.
Zurück zum Zitat Wang Z, Sun Q (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 30:418–429MathSciNetMATH Wang Z, Sun Q (2014) Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness. Acta Mech Sin 30:418–429MathSciNetMATH
16.
Zurück zum Zitat Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Meth Eng 86:1413–1434MathSciNetMATH Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Meth Eng 86:1413–1434MathSciNetMATH
17.
Zurück zum Zitat Hamadi D, Ayoub A, Abdelhafid O (2015) A new flat shell finite element for the linear analysis of thin shell structures. Eur J Comput Mech 24:232–255 Hamadi D, Ayoub A, Abdelhafid O (2015) A new flat shell finite element for the linear analysis of thin shell structures. Eur J Comput Mech 24:232–255
18.
Zurück zum Zitat Shang Y, Cen S, Li CF (2016) A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements. Eng Comput 33:713–741 Shang Y, Cen S, Li CF (2016) A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements. Eng Comput 33:713–741
19.
Zurück zum Zitat Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8MATH Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8MATH
20.
Zurück zum Zitat Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Comput Struct 77:129–139 Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Comput Struct 77:129–139
21.
Zurück zum Zitat Pimpinelli G (2004) An assumed strain quadrilateral element with drilling degrees of freedom. Finite Elem Anal Des 41:267–283 Pimpinelli G (2004) An assumed strain quadrilateral element with drilling degrees of freedom. Finite Elem Anal Des 41:267–283
22.
Zurück zum Zitat Madeo A, Zagari G, Casciaro R (2012) An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem Anal Des 50:21–32 Madeo A, Zagari G, Casciaro R (2012) An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem Anal Des 50:21–32
23.
Zurück zum Zitat Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195:4095–4105MATH Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195:4095–4105MATH
24.
Zurück zum Zitat Rojas F, Anderson JC, Massone LM (2016) A nonlinear quadrilateral layered membrane element with drilling degrees of freedom for the modeling of reinforced concrete walls. Eng Struct 124:521–538 Rojas F, Anderson JC, Massone LM (2016) A nonlinear quadrilateral layered membrane element with drilling degrees of freedom for the modeling of reinforced concrete walls. Eng Struct 124:521–538
25.
Zurück zum Zitat Nestorović T, Marinković D, Shabadi S, Trajkov M (2014) User defined finite element for modeling and analysis of active piezoelectric shell structures. Meccanica 49:1763–1774MathSciNetMATH Nestorović T, Marinković D, Shabadi S, Trajkov M (2014) User defined finite element for modeling and analysis of active piezoelectric shell structures. Meccanica 49:1763–1774MathSciNetMATH
26.
Zurück zum Zitat Areias P, de Sá JC, Cardoso R (2015) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 31:691–709 Areias P, de Sá JC, Cardoso R (2015) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 31:691–709
27.
Zurück zum Zitat Kim KD, Liu GZ, Han SC (2005) A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput Mech 35:315–331MATH Kim KD, Liu GZ, Han SC (2005) A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput Mech 35:315–331MATH
28.
Zurück zum Zitat Li ZX, Izzuddin BA, Vu-Quoc L (2008) A 9-node co-rotational quadrilateral shell element. Comput Mech 42:873MATH Li ZX, Izzuddin BA, Vu-Quoc L (2008) A 9-node co-rotational quadrilateral shell element. Comput Mech 42:873MATH
29.
Zurück zum Zitat Li Z, Xiang Y, Izzuddin BA, Vu-Quoc L, Zhuo X, Zhang C (2015) A 6-node co-rotational triangular elasto-plastic shell element. Comput Mech 55:837–859MathSciNetMATH Li Z, Xiang Y, Izzuddin BA, Vu-Quoc L, Zhuo X, Zhang C (2015) A 6-node co-rotational triangular elasto-plastic shell element. Comput Mech 55:837–859MathSciNetMATH
30.
Zurück zum Zitat Shang Y, Ouyang W (2018) 4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113:1589–1606MathSciNet Shang Y, Ouyang W (2018) 4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113:1589–1606MathSciNet
31.
Zurück zum Zitat Adini A, Clough RW (1961) Analysis of plate bending by the finite element method. Report to the National Science Foundation, G 7337, Arlington Adini A, Clough RW (1961) Analysis of plate bending by the finite element method. Report to the National Science Foundation, G 7337, Arlington
32.
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and applications of finite element analysis, vol 4. Wiley, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and applications of finite element analysis, vol 4. Wiley, New York
33.
Zurück zum Zitat Timoshenko SP, Woinowsky-Krieger S (1969) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkMATH Timoshenko SP, Woinowsky-Krieger S (1969) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkMATH
34.
Zurück zum Zitat Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA J 1:1631–1637 Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA J 1:1631–1637
35.
Zurück zum Zitat Lee Y, Lee PS, Bathe KJ (2014) The MITC3+ shell element and its performance. Comput Struct 138:12–23 Lee Y, Lee PS, Bathe KJ (2014) The MITC3+ shell element and its performance. Comput Struct 138:12–23
36.
Zurück zum Zitat Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88 Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88
37.
Zurück zum Zitat Ko Y, Lee PS, Bathe KJ (2017) A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput Struct 192:34–49 Ko Y, Lee PS, Bathe KJ (2017) A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput Struct 192:34–49
38.
Zurück zum Zitat Ibrahimbegović A, Frey F (1994) Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: linearized kinematics. Int J Numer Methods Eng 37:3659–3683MATH Ibrahimbegović A, Frey F (1994) Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: linearized kinematics. Int J Numer Methods Eng 37:3659–3683MATH
39.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92MATH Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng 73:53–92MATH
40.
Zurück zum Zitat Liu WK, Law ES, Lam D, Belytschko T (1986) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55:259–300MATH Liu WK, Law ES, Lam D, Belytschko T (1986) Resultant-stress degenerated-shell element. Comput Methods Appl Mech Eng 55:259–300MATH
41.
Zurück zum Zitat Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Methods Appl Mech Eng 113:321–350MATH Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Methods Appl Mech Eng 113:321–350MATH
42.
Zurück zum Zitat Alves de Sousa RJ, Cardoso RP, Fontes Valente RA, Yoon JW, Grácio JJ, Natal Jorge RM (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I—geometrically linear applications. Int J Numer Meth Eng 62:952–977MATH Alves de Sousa RJ, Cardoso RP, Fontes Valente RA, Yoon JW, Grácio JJ, Natal Jorge RM (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I—geometrically linear applications. Int J Numer Meth Eng 62:952–977MATH
43.
Zurück zum Zitat Wang C, Hu P, Xia Y (2012) A 4-node quasi-conforming Reissner–Mindlin shell element by using Timoshenko’s beam function. Finite Elem Anal Des 61:12–22MathSciNet Wang C, Hu P, Xia Y (2012) A 4-node quasi-conforming Reissner–Mindlin shell element by using Timoshenko’s beam function. Finite Elem Anal Des 61:12–22MathSciNet
44.
Zurück zum Zitat Norachan P, Suthasupradit S, Kim KD (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85MathSciNet Norachan P, Suthasupradit S, Kim KD (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85MathSciNet
45.
Zurück zum Zitat Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, César de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925MATH Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, César de Sá JMA (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20:896–925MATH
46.
Zurück zum Zitat César de Sá JM, Natal Jorge RM, Fontes Valente RA, Almeida Areias PM (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53:1721–1750MATH César de Sá JM, Natal Jorge RM, Fontes Valente RA, Almeida Areias PM (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53:1721–1750MATH
47.
Zurück zum Zitat Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC shell element: theoretical and numerical investigation. Comput Methods Appl Mech Eng 182:217–245MATH Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC shell element: theoretical and numerical investigation. Comput Methods Appl Mech Eng 182:217–245MATH
48.
Zurück zum Zitat Abed-Meraim F, Combescure A (2007) A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. Eur J Comput Mech 16:1037–1072MATH Abed-Meraim F, Combescure A (2007) A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. Eur J Comput Mech 16:1037–1072MATH
49.
Zurück zum Zitat Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SP (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198:165–177MATH Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas SP (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198:165–177MATH
50.
Zurück zum Zitat Moreira RAS, Rodrigues JD (2011) A non-conforming plate facet-shell finite element with drilling stiffness. Finite Elem Anal Des 47:973–981 Moreira RAS, Rodrigues JD (2011) A non-conforming plate facet-shell finite element with drilling stiffness. Finite Elem Anal Des 47:973–981
51.
Zurück zum Zitat Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36:1413–1425MATH Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36:1413–1425MATH
52.
Zurück zum Zitat Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168MATH Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168MATH
53.
Zurück zum Zitat Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86:71–80MathSciNet Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86:71–80MathSciNet
54.
Zurück zum Zitat Timoshenko S, Goodier JN (1979) Theory of elasticity, 3rd edn. McGraw-Hill, New YorkMATH Timoshenko S, Goodier JN (1979) Theory of elasticity, 3rd edn. McGraw-Hill, New YorkMATH
55.
Zurück zum Zitat Flügge W (1973) Stresses in shells. Springer, New YorkMATH Flügge W (1973) Stresses in shells. Springer, New YorkMATH
56.
Zurück zum Zitat Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20 Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20
57.
Zurück zum Zitat Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206 Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206
Metadaten
Titel
Formulation and evaluation of a new four-node quadrilateral element for analysis of the shell structures
verfasst von
Hosein Sangtarash
Hamed Ghohani Arab
Mohammad Reza Sohrabi
Mohammad Reza Ghasemi
Publikationsdatum
07.05.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2020
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00763-8

Weitere Artikel der Ausgabe 4/2020

Engineering with Computers 4/2020 Zur Ausgabe

Neuer Inhalt