Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Gas Flow, Particle Acceleration and Heat Transfer in Cold Spray Additive Manufacturing

Authors : Shuo Yin, Rocco Lupoi

Published in: Cold Spray Additive Manufacturing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In CSAM, successful particle deposition requires the particles to achieve a higher velocity than critical velocity. Therefore, a thorough understanding of particle acceleration and heating behavior inside and outside a cold spray nozzle is critical for developing high-performance cold sprayed deposits. Over the years, much effort has been devoted to investigate the supersonic gas flow and the consequent particle acceleration and heating behavior inside and outside the nozzle. Experimental investigation is the most direct way to clarify these physical phenomena involved in cold spray process. However, the relatively high money- and timing- cost, especially the infeasibility to capture all the flow features (e.g. flow velocity, temperature, density and turbulence properties) inside and outside the nozzle significantly limits the wide application of experimental approach. To deal with this problem, analytical and numerical modeling were developed and employed in many studies. In the early stage, various analytical models were developed to predict the gas flow properties and particle velocity. These analytical models, mainly one-dimensional (1D) model, normally introduced assumptions and simplifications to the real physical problems, thus the prediction accuracy may be not satisfactory. Thanks to the rapid growth of the computer power, computational fluid dynamics (CFD) technique has become a popular approach to predict the gas flow properties and particle velocity in cold spray. It is highly flexible to simulate the gas flow at different working conditions and costs less than experiment. This chapter provides a comprehensive introduction on the gas flow, particle acceleration, and heat transfer behavior in cold spray.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
9.
go back to reference Lee, M.W., Park, J.J., Kim, D.Y., Yoon, S.S., Kim, H.Y., James, S.C., Chandra, S., Coyle, T.: Numerical studies on the effects of stagnation pressure and temperature on supersonic flow characteristics in cold spray applications. J. Therm. Spray Technol. 20, 1085–1097 (2011). https://doi.org/10.1007/s11666-011-9641-1CrossRef Lee, M.W., Park, J.J., Kim, D.Y., Yoon, S.S., Kim, H.Y., James, S.C., Chandra, S., Coyle, T.: Numerical studies on the effects of stagnation pressure and temperature on supersonic flow characteristics in cold spray applications. J. Therm. Spray Technol. 20, 1085–1097 (2011). https://​doi.​org/​10.​1007/​s11666-011-9641-1CrossRef
20.
go back to reference Versteeg, H., Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Pearson Education Limited (2007) Versteeg, H., Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Pearson Education Limited (2007)
28.
go back to reference GHIAS, R.: Simulation of flow through supersonic cruise nozzle:a validaiton study. Presented at the (2011) GHIAS, R.: Simulation of flow through supersonic cruise nozzle:a validaiton study. Presented at the (2011)
42.
go back to reference Zapryagaev, V.I., Kudryavtsev, A.N., Lokotko, A.V., Solotchin, A.V., Pavlov, A.A., Hadjadj, A.: An experimental and numberical study of a supersonic-jet shock-wave structure. In: Proceedings of the XI International Conference on the Methods of Aerophysical Research. pp. 187–191, Russia (2002) Zapryagaev, V.I., Kudryavtsev, A.N., Lokotko, A.V., Solotchin, A.V., Pavlov, A.A., Hadjadj, A.: An experimental and numberical study of a supersonic-jet shock-wave structure. In: Proceedings of the XI International Conference on the Methods of Aerophysical Research. pp. 187–191, Russia (2002)
54.
go back to reference Yin, S., Wang, X.F., Li, W.Y., Li, Y.: Numerical study on the effect of substrate size on the supersonic jet flow and temperature distribution within the substrate in cold spraying (2012) Yin, S., Wang, X.F., Li, W.Y., Li, Y.: Numerical study on the effect of substrate size on the supersonic jet flow and temperature distribution within the substrate in cold spraying (2012)
57.
go back to reference Li, W.Y., Li, C.J.: Optimization of spray conditions in cold spraying based on numerical analysis of particle velocity. Trans. Nonferrous Met. Soc. China (English Ed.). 14, 43–48 (2004) Li, W.Y., Li, C.J.: Optimization of spray conditions in cold spraying based on numerical analysis of particle velocity. Trans. Nonferrous Met. Soc. China (English Ed.). 14, 43–48 (2004)
60.
go back to reference Wang, X.-F., Yin, S., Xu, B.P.B.P.B.P.: Effect of cold spray particle conditions and optimal standoff distance on impact velocity. J. Dalian Univ. Technol. 51, 498–504 (2011) Wang, X.-F., Yin, S., Xu, B.P.B.P.B.P.: Effect of cold spray particle conditions and optimal standoff distance on impact velocity. J. Dalian Univ. Technol. 51, 498–504 (2011)
69.
go back to reference Park, J.J., Lee, M.W., Yoon, S.S., Kim, H.Y., James, S.C., Heister, S.D., Chandra, S., Yoon, W.H., Park, D.S., Ryu, J.: Supersonic nozzle flow simulations for particle coating applications: effects of shockwaves, nozzle geometry, ambient pressure, and substrate location upon flow characteristics. J. Therm. Spray Technol. 20, 514–522 (2011). https://doi.org/10.1007/s11666-010-9542-8CrossRef Park, J.J., Lee, M.W., Yoon, S.S., Kim, H.Y., James, S.C., Heister, S.D., Chandra, S., Yoon, W.H., Park, D.S., Ryu, J.: Supersonic nozzle flow simulations for particle coating applications: effects of shockwaves, nozzle geometry, ambient pressure, and substrate location upon flow characteristics. J. Therm. Spray Technol. 20, 514–522 (2011). https://​doi.​org/​10.​1007/​s11666-010-9542-8CrossRef
73.
go back to reference Huang, G., Gu, D., Li, X., Xing, L.: Computational simulation on a coaxial substream powder feeding laval nozzle of cold spraying. Mater. Sci. 20 (2014) Huang, G., Gu, D., Li, X., Xing, L.: Computational simulation on a coaxial substream powder feeding laval nozzle of cold spraying. Mater. Sci. 20 (2014)
81.
go back to reference Karimi, M., Rankin, G.W., Fartaj, A.: Parametric study of exhaust pattern in cold spray using CFD and particle-wall impact analysis. J. Appl. Fluid Mech. 7, 75–87 (2014) Karimi, M., Rankin, G.W., Fartaj, A.: Parametric study of exhaust pattern in cold spray using CFD and particle-wall impact analysis. J. Appl. Fluid Mech. 7, 75–87 (2014)
87.
go back to reference Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. In: Press, A. (ed.) Technical Report (1978) Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. In: Press, A. (ed.) Technical Report (1978)
88.
go back to reference Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase flows with droplets and particles. CRC Press, Boca Raton (1998) Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase flows with droplets and particles. CRC Press, Boca Raton (1998)
91.
go back to reference Schiller, L., N.: A drag coefficient correlation. VDI Zeits. 77, 318–320 (1933) Schiller, L., N.: A drag coefficient correlation. VDI Zeits. 77, 318–320 (1933)
92.
go back to reference Morsi, S.A., Alexander, A.J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)CrossRef Morsi, S.A., Alexander, A.J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)CrossRef
93.
go back to reference Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. 58, 63–70 (1989) Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. 58, 63–70 (1989)
94.
go back to reference Crowe, C.T.: Drag coefficient of particles in a rocket nozzle. AIAA J. 5, 1021–1022 (1967)CrossRef Crowe, C.T.: Drag coefficient of particles in a rocket nozzle. AIAA J. 5, 1021–1022 (1967)CrossRef
98.
go back to reference Ranz, W.E., Jr, W.R.M.: Evaporation from drops Part I. Chem. Eng. Prog. 48, 141–146 (1952) Ranz, W.E., Jr, W.R.M.: Evaporation from drops Part I. Chem. Eng. Prog. 48, 141–146 (1952)
99.
go back to reference Hughmark, G.A.: Mass and heat transfer from rigid sphere. AlChE J. 13, 1219–1221 (1967)CrossRef Hughmark, G.A.: Mass and heat transfer from rigid sphere. AlChE J. 13, 1219–1221 (1967)CrossRef
100.
go back to reference Carlson, D.J., Chambre, P.L.: Particle drag and heat transfer in rocket nozzles. AIAA J. 2, 1980–1984 (1964)CrossRef Carlson, D.J., Chambre, P.L.: Particle drag and heat transfer in rocket nozzles. AIAA J. 2, 1980–1984 (1964)CrossRef
101.
go back to reference Y., P.W., Prasad, V., Wang, G.-X., Sampath, S., Fincke, J.R.: Model and powder particle heating, melting, resolidification, and evaporation in plasma spraying processes. J. Heat Transfer. 121, 691–699 (1999) Y., P.W., Prasad, V., Wang, G.-X., Sampath, S., Fincke, J.R.: Model and powder particle heating, melting, resolidification, and evaporation in plasma spraying processes. J. Heat Transfer. 121, 691–699 (1999)
102.
go back to reference K.W., T.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987) K.W., T.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)
113.
go back to reference Fukumoto, M., Wada, H., Tanabe, K., Yamada, M., Yamaguchi, E., Niwa, A., Sugimoto, M., Izawa, M.: Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J. Therm. Spray Technol. 16, 643–650 (2007). https://doi.org/10.1007/s11666-007-9121-9CrossRef Fukumoto, M., Wada, H., Tanabe, K., Yamada, M., Yamaguchi, E., Niwa, A., Sugimoto, M., Izawa, M.: Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J. Therm. Spray Technol. 16, 643–650 (2007). https://​doi.​org/​10.​1007/​s11666-007-9121-9CrossRef
121.
go back to reference Smith, M.F., O ’hern, T.J., Brockmann, J.E., Neiser, R.A., Roemer, T.J.: A comparison of two laser-based diagnostics for analysis of particles in thermal spray streams. Proc. 1995 Natl. Therm. Spray Conf. 1–15 (1995) Smith, M.F., O ’hern, T.J., Brockmann, J.E., Neiser, R.A., Roemer, T.J.: A comparison of two laser-based diagnostics for analysis of particles in thermal spray streams. Proc. 1995 Natl. Therm. Spray Conf. 1–15 (1995)
137.
go back to reference Koivuluoto, H., Larjo, J., Marini, D., Pulci, G., Marra, F.: Cold-sprayed Al6061 coatings: online spray. Coatings. 10, 348 (2020)CrossRef Koivuluoto, H., Larjo, J., Marini, D., Pulci, G., Marra, F.: Cold-sprayed Al6061 coatings: online spray. Coatings. 10, 348 (2020)CrossRef
Metadata
Title
Gas Flow, Particle Acceleration and Heat Transfer in Cold Spray Additive Manufacturing
Authors
Shuo Yin
Rocco Lupoi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73367-4_2

Premium Partners