Skip to main content
Top
Published in: Production Engineering 3/2020

18-03-2020 | Production Process

Hardware in the loop simulation for product driven control of a cyber-physical manufacturing system

Authors: B. Mihoubi, B. Bouzouia, K. Tebani, M. Gaham

Published in: Production Engineering | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cyber-physical system (CPS) is considered as a building block of industry 4.0. They are formulated as a network of interacting cyberspace and physical elements. Dealing with this new industrial context, distributed control systems (DCS) are increasingly involved because they permit meeting flexibility and adaptability requirements, which can give scope to CPS. The product driven control system (PDS) is considered as DCS in which the product plays a major role in decision-making. However, the PDS paradigm has not yet received sufficient attention within the CPS. Relying on multi-agents system as implementation framework, radio frequency identity as auto-identity technologies, and hardware in the loop simulation as a practical methodology, the paper proposes a validation and practical framework of PDS applied to the highly automated flexible robotized assembly system. An efficient CPS is developed for a discrete flexible manufacturing system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liao Y, Deschamps F, Freitas Rocha Loures DE, Ramos LFP (2017) Past, present and future of Industry 4.0—a systematic literature review and research agenda proposal. Int J Prod Res 55(12):3609–3629CrossRef Liao Y, Deschamps F, Freitas Rocha Loures DE, Ramos LFP (2017) Past, present and future of Industry 4.0—a systematic literature review and research agenda proposal. Int J Prod Res 55(12):3609–3629CrossRef
2.
go back to reference Verl A, Lechler A, Schlechtendahl J (2012) Glocalized cyber physical production systems. Prod Eng Res Dev 6(6):643–649CrossRef Verl A, Lechler A, Schlechtendahl J (2012) Glocalized cyber physical production systems. Prod Eng Res Dev 6(6):643–649CrossRef
3.
go back to reference Bangemann T, Riedl M, Thron M, Diedrich C (2016) Integration of classical components into industrial cyber physical systems. Proc IEEE 104(5):947–959CrossRef Bangemann T, Riedl M, Thron M, Diedrich C (2016) Integration of classical components into industrial cyber physical systems. Proc IEEE 104(5):947–959CrossRef
4.
go back to reference Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394CrossRef Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394CrossRef
5.
go back to reference Leitao P, Karnouskos S, Ribeiro L, Lee J, Strasser T, Colombo AW (2016) Smart agents in industrial cyber–physical systems. Proc IEEE 104(5):1086–1101CrossRef Leitao P, Karnouskos S, Ribeiro L, Lee J, Strasser T, Colombo AW (2016) Smart agents in industrial cyber–physical systems. Proc IEEE 104(5):1086–1101CrossRef
6.
go back to reference Cardin O (2019) Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput Ind 104:11–21CrossRef Cardin O (2019) Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput Ind 104:11–21CrossRef
7.
go back to reference Wang Y, Ma HS, Yang JH, Wang KS (2017) Industry 4.0: a way from mass customization to mass personalization production. Adv Manuf 5(4):311–320CrossRef Wang Y, Ma HS, Yang JH, Wang KS (2017) Industry 4.0: a way from mass customization to mass personalization production. Adv Manuf 5(4):311–320CrossRef
8.
go back to reference Monostori L, Kádár B, Bauernhansl T et al (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641CrossRef Monostori L, Kádár B, Bauernhansl T et al (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641CrossRef
9.
go back to reference Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23CrossRef Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23CrossRef
10.
go back to reference Zhang J, Ding G, Zou Y, Qin S, Fu J (2019) Review of job shop scheduling research and its new perspectives under Industry 4.0. J Intell Manuf 30(4):1809–1830CrossRef Zhang J, Ding G, Zou Y, Qin S, Fu J (2019) Review of job shop scheduling research and its new perspectives under Industry 4.0. J Intell Manuf 30(4):1809–1830CrossRef
11.
go back to reference Shen W, Norrie DH (1999) Agent-based systems for intelligent manufacturing: a state-of-the-art survey. Knowl Inf Syst 1(2):129–156CrossRef Shen W, Norrie DH (1999) Agent-based systems for intelligent manufacturing: a state-of-the-art survey. Knowl Inf Syst 1(2):129–156CrossRef
12.
go back to reference Rey GZ, Bonte T, Prabhu V, Trentesaux D (2014) Reducing myopic behavior in FMS control: a semi-heterarchical simulation–optimization approach. Simul Model Pract Theory 46:53–75CrossRef Rey GZ, Bonte T, Prabhu V, Trentesaux D (2014) Reducing myopic behavior in FMS control: a semi-heterarchical simulation–optimization approach. Simul Model Pract Theory 46:53–75CrossRef
13.
go back to reference Gaham M, Bouzouia B, Achour N (2014) An evolutionary simulation-optimization approach to product-driven manufacturing control. Springer, Berlin, pp 283–294 Gaham M, Bouzouia B, Achour N (2014) An evolutionary simulation-optimization approach to product-driven manufacturing control. Springer, Berlin, pp 283–294
14.
go back to reference Upasani K, Bakshi M, Pandhare V, Lad BK (2017) Distributed maintenance planning in manufacturing industries. Comput Ind Eng 108:1–14CrossRef Upasani K, Bakshi M, Pandhare V, Lad BK (2017) Distributed maintenance planning in manufacturing industries. Comput Ind Eng 108:1–14CrossRef
15.
16.
go back to reference Xiang W, Lee HP (2008) Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Eng Appl Artif Intell 21(1):73–85CrossRef Xiang W, Lee HP (2008) Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Eng Appl Artif Intell 21(1):73–85CrossRef
17.
go back to reference Pannequin R, Morel G, Thomas A (2009) The performance of product-driven manufacturing control: an emulation-based benchmarking study. Comput Ind 60(3):195–203CrossRef Pannequin R, Morel G, Thomas A (2009) The performance of product-driven manufacturing control: an emulation-based benchmarking study. Comput Ind 60(3):195–203CrossRef
18.
go back to reference El Haouzi H, Pétin JF, Thomas A (2009) Design and validation of a product-driven control system based on a six sigma methodology and discrete event simulation. Prod Plan Control 20(6):510–524CrossRef El Haouzi H, Pétin JF, Thomas A (2009) Design and validation of a product-driven control system based on a six sigma methodology and discrete event simulation. Prod Plan Control 20(6):510–524CrossRef
19.
go back to reference Porter ME, Heppelmann JE (2014) How smart, connected products are transforming competition. Harvard Bus Rev 92(11):64–88 Porter ME, Heppelmann JE (2014) How smart, connected products are transforming competition. Harvard Bus Rev 92(11):64–88
20.
go back to reference Mühlhäuser M (2007) Smart products: an introduction. Springer, Berlin, pp 158–164 Mühlhäuser M (2007) Smart products: an introduction. Springer, Berlin, pp 158–164
21.
go back to reference McFarlane D, Sarma S, Chirn JL, Wong C, Ashton K (2002) The intelligent product in manufacturing control and management. IFAC Proc Vol 35(1):49–54CrossRef McFarlane D, Sarma S, Chirn JL, Wong C, Ashton K (2002) The intelligent product in manufacturing control and management. IFAC Proc Vol 35(1):49–54CrossRef
22.
go back to reference Meyer GG, Främling K, Holmström J (2009) Intelligent products: a survey. Comput Ind 60(3):137–148CrossRef Meyer GG, Främling K, Holmström J (2009) Intelligent products: a survey. Comput Ind 60(3):137–148CrossRef
23.
go back to reference McFarlane D, Giannikas V, Wong AC, Harrison M (2013) Product intelligence in industrial control: theory and practice. Annu Rev Control 37(1):69–88CrossRef McFarlane D, Giannikas V, Wong AC, Harrison M (2013) Product intelligence in industrial control: theory and practice. Annu Rev Control 37(1):69–88CrossRef
24.
go back to reference Leitão P, Rodrigues N, Barbosa J, Turrin C, Pagani A (2015) Intelligent products: the grace experience. Control Eng Pract 42:95–105CrossRef Leitão P, Rodrigues N, Barbosa J, Turrin C, Pagani A (2015) Intelligent products: the grace experience. Control Eng Pract 42:95–105CrossRef
25.
go back to reference Zhang Y, Qian C, Lv J, Liu Y (2016) Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans Ind Inf 13(2):737–747CrossRef Zhang Y, Qian C, Lv J, Liu Y (2016) Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans Ind Inf 13(2):737–747CrossRef
26.
go back to reference Basile F, Chiacchio P, Coppola J (2016) A cyber-physical view of automated warehouse systems. In: IEEE, pp 407–412 Basile F, Chiacchio P, Coppola J (2016) A cyber-physical view of automated warehouse systems. In: IEEE, pp 407–412
27.
go back to reference McFarlane D, Sarma S, Chirn JL, Wong C, Ashton K (2003) Auto ID systems and intelligent manufacturing control. Eng Appl Artif Intell 16(4):365–376CrossRef McFarlane D, Sarma S, Chirn JL, Wong C, Ashton K (2003) Auto ID systems and intelligent manufacturing control. Eng Appl Artif Intell 16(4):365–376CrossRef
28.
go back to reference Lu B, Bateman R, Cheng K (2006) RFID enabled manufacturing: fundamentals, methodology and applications. Int J Agile Syst Manag 1(1):73–92CrossRef Lu B, Bateman R, Cheng K (2006) RFID enabled manufacturing: fundamentals, methodology and applications. Int J Agile Syst Manag 1(1):73–92CrossRef
29.
go back to reference Wang KS (2014) Intelligent and integrated RFID (II-RFID) system for improving traceability in manufacturing. Adv Manuf 2(2):106–120CrossRef Wang KS (2014) Intelligent and integrated RFID (II-RFID) system for improving traceability in manufacturing. Adv Manuf 2(2):106–120CrossRef
30.
go back to reference Guo Z, Ngai E, Yang C, Liang X (2015) An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. Int J Prod Econ 159:16–28CrossRef Guo Z, Ngai E, Yang C, Liang X (2015) An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. Int J Prod Econ 159:16–28CrossRef
31.
go back to reference Barbosa J, Leitão P, Teixeira J (2018) Empowering a cyber-physical system for a modular conveyor system with selforganization. Springer, Berlin, pp 157–170 Barbosa J, Leitão P, Teixeira J (2018) Empowering a cyber-physical system for a modular conveyor system with selforganization. Springer, Berlin, pp 157–170
32.
go back to reference Gonzalez SR, Zambrano GM, Mondragon IF (2019) Semi-heterarchical architecture to AGV adjustable autonomy within FMSs. IFAC Pap OnLine 52(10):7–12CrossRef Gonzalez SR, Zambrano GM, Mondragon IF (2019) Semi-heterarchical architecture to AGV adjustable autonomy within FMSs. IFAC Pap OnLine 52(10):7–12CrossRef
33.
go back to reference Feliciano Filho M, Liao Y, Loures ER, Junior OC (2017) Self-aware smart products: systematic literature review, conceptual design and prototype implementation. Proc Manuf 11:1471–1480 Feliciano Filho M, Liao Y, Loures ER, Junior OC (2017) Self-aware smart products: systematic literature review, conceptual design and prototype implementation. Proc Manuf 11:1471–1480
34.
go back to reference Molesini A, Casadei M, Omicini A, Viroli M (2013) Simulation in agent-oriented software engineering: the SODA case study. Sci Comput Program 78(6):705–714CrossRef Molesini A, Casadei M, Omicini A, Viroli M (2013) Simulation in agent-oriented software engineering: the SODA case study. Sci Comput Program 78(6):705–714CrossRef
35.
go back to reference Madni AM, Sievers M (2018) Model-based systems engineering: motivation, current status, and research opportunities. Syst Eng 21(3):172–190CrossRef Madni AM, Sievers M (2018) Model-based systems engineering: motivation, current status, and research opportunities. Syst Eng 21(3):172–190CrossRef
37.
go back to reference Soylemezoglu A, Zawodniok MJ, Cha K et al (2006) A testbed architecture for auto-ID technologies. Assembly Autom 26(2):127–136CrossRef Soylemezoglu A, Zawodniok MJ, Cha K et al (2006) A testbed architecture for auto-ID technologies. Assembly Autom 26(2):127–136CrossRef
38.
go back to reference Millitzer J, Mayer D, Henke C et al (2019) Recent developments in hardware-in-the-loop testing. Springer, Berlin, pp 65–73 Millitzer J, Mayer D, Henke C et al (2019) Recent developments in hardware-in-the-loop testing. Springer, Berlin, pp 65–73
39.
go back to reference Harrison WS, Tilbury DM, Yuan C (2011) From hardware-in-the-loop to hybrid process simulation: an ontology for the implementation phase of a manufacturing system. IEEE Trans Autom Sci Eng 9(1):96–109CrossRef Harrison WS, Tilbury DM, Yuan C (2011) From hardware-in-the-loop to hybrid process simulation: an ontology for the implementation phase of a manufacturing system. IEEE Trans Autom Sci Eng 9(1):96–109CrossRef
40.
go back to reference Sarhadi P, Yousefpour S (2015) State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementation of system and control software. Int J Dyn Control 3(4):470–479CrossRef Sarhadi P, Yousefpour S (2015) State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementation of system and control software. Int J Dyn Control 3(4):470–479CrossRef
41.
go back to reference Zhang H, Liu Q, Chen X, Zhang D, Leng J (2017) A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 5:26901–26911CrossRef Zhang H, Liu Q, Chen X, Zhang D, Leng J (2017) A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 5:26901–26911CrossRef
42.
go back to reference Putman NM, Maturana F, Barton K, Tilbury DM (2017) Virtual fusion: a hybrid environment for improved commissioning in manufacturing systems. Int J Prod Res 55(21):6254–6265CrossRef Putman NM, Maturana F, Barton K, Tilbury DM (2017) Virtual fusion: a hybrid environment for improved commissioning in manufacturing systems. Int J Prod Res 55(21):6254–6265CrossRef
44.
go back to reference Browne J, Dubois D, Rathmill K, Sethi SP, Stecke KE et al (1984) Classification of flexible manufacturing systems. FMS Mag 2(2):114–117 Browne J, Dubois D, Rathmill K, Sethi SP, Stecke KE et al (1984) Classification of flexible manufacturing systems. FMS Mag 2(2):114–117
45.
go back to reference Bellifemine FL, Caire G, Greenwood D (2007) Developing multi-agent systems with JADE. 7. Wiley, New YorkCrossRef Bellifemine FL, Caire G, Greenwood D (2007) Developing multi-agent systems with JADE. 7. Wiley, New YorkCrossRef
46.
go back to reference Burbank JL, Kasch W, Ward J (2011) An introduction to network modeling and simulation for the practicing engineer. Wiley, New YorkCrossRef Burbank JL, Kasch W, Ward J (2011) An introduction to network modeling and simulation for the practicing engineer. Wiley, New YorkCrossRef
47.
go back to reference Marijan D, Gotlieb A, Liaaen M (2019) A learning algorithm for optimizing continuous integration development and testing practice. Softw Pract Exp 49(2):192–213CrossRef Marijan D, Gotlieb A, Liaaen M (2019) A learning algorithm for optimizing continuous integration development and testing practice. Softw Pract Exp 49(2):192–213CrossRef
48.
go back to reference Li Q, Yang Y, Li M, Wang Q, Boehm BW, Hu C (2012) Improving software testing process: feature prioritization to make winners of success-critical stakeholders. J Softw Evol Process 24(7):783–801CrossRef Li Q, Yang Y, Li M, Wang Q, Boehm BW, Hu C (2012) Improving software testing process: feature prioritization to make winners of success-critical stakeholders. J Softw Evol Process 24(7):783–801CrossRef
49.
go back to reference Trentesaux D, Pach C, Bekrar A et al (2013) Benchmarking flexible job-shop scheduling and control systems. Control Eng Pract 21(9):1204–1225CrossRef Trentesaux D, Pach C, Bekrar A et al (2013) Benchmarking flexible job-shop scheduling and control systems. Control Eng Pract 21(9):1204–1225CrossRef
51.
go back to reference Zambrano Rey G, Bekrar A, Prabhu V, Trentesaux D (2014) Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. Int J Prod Res 52(12):3688–3709CrossRef Zambrano Rey G, Bekrar A, Prabhu V, Trentesaux D (2014) Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. Int J Prod Res 52(12):3688–3709CrossRef
53.
go back to reference Nasiri MM, Yazdanparast R, Jolai F (2017) A simulation optimisation approach for real-time scheduling in an open shop environment using a composite dispatching rule. Int J Comput Integr Manuf 30(12):1239–1252CrossRef Nasiri MM, Yazdanparast R, Jolai F (2017) A simulation optimisation approach for real-time scheduling in an open shop environment using a composite dispatching rule. Int J Comput Integr Manuf 30(12):1239–1252CrossRef
54.
go back to reference Azadeh A, Shoja BM, Moghaddam M, Asadzadeh S, Akbari A (2013) A neural network meta-model for identification of optimal combination of priority dispatching rules and makespan in a deterministic job shop scheduling problem. Int J Adv Manuf Technol 67(5–8):1549–1561CrossRef Azadeh A, Shoja BM, Moghaddam M, Asadzadeh S, Akbari A (2013) A neural network meta-model for identification of optimal combination of priority dispatching rules and makespan in a deterministic job shop scheduling problem. Int J Adv Manuf Technol 67(5–8):1549–1561CrossRef
55.
go back to reference Nordgren WB (2002) Flexsim simulation environment. In: Proceedings of the winter simulation conference, vol 1. IEEE, pp 250–252 Nordgren WB (2002) Flexsim simulation environment. In: Proceedings of the winter simulation conference, vol 1. IEEE, pp 250–252
56.
go back to reference Röck S (2011) Hardware in the loop simulation of production systems dynamics. Prod Eng Res Dev 5(3):329–337CrossRef Röck S (2011) Hardware in the loop simulation of production systems dynamics. Prod Eng Res Dev 5(3):329–337CrossRef
57.
go back to reference Mihoubi B, Gaham M, Bouzouia B, Bekrar A (2015) A rule-based harmony search simulation-optimization approach for intelligent control of a robotic assembly cell. In: IEEE, pp 1–6 Mihoubi B, Gaham M, Bouzouia B, Bekrar A (2015) A rule-based harmony search simulation-optimization approach for intelligent control of a robotic assembly cell. In: IEEE, pp 1–6
58.
go back to reference Sallez Y, Berger T, Trentesaux D (2009) A stigmergic approach for dynamic routing of active products in FMS. Comput Ind 60(3):204–216CrossRef Sallez Y, Berger T, Trentesaux D (2009) A stigmergic approach for dynamic routing of active products in FMS. Comput Ind 60(3):204–216CrossRef
Metadata
Title
Hardware in the loop simulation for product driven control of a cyber-physical manufacturing system
Authors
B. Mihoubi
B. Bouzouia
K. Tebani
M. Gaham
Publication date
18-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Production Engineering / Issue 3/2020
Print ISSN: 0944-6524
Electronic ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-020-00957-w

Other articles of this Issue 3/2020

Production Engineering 3/2020 Go to the issue

Premium Partners