Skip to main content
Top
Published in: Microsystem Technologies 6/2017

11-05-2016 | Technical Paper

High precision tracking of a piezoelectric positioner using a discrete-time sliding mode control

Authors: Geng Wang, Yanru Zhao, Yeming Zhang, Chunchao Chen

Published in: Microsystem Technologies | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a new comprehensive control strategy to precisely control a piezoelectric positioner by combining discrete-time sliding mode control (DSMC) with the Prandtl-Ishlinskii hysteresis model. In order to obtain precision tracking control, a direct inverse hysteresis compensation method is firstly adopted to compensate for the asymmetric hysteresis nonlinearity. Due to the existence of hysteresis modeling error, the dynamics behavior of the piezoelectric positioner with hysteresis compensation can be treated as a linear second order plant plus an unknown lumped disturbance term. Then a discrete-time sliding mode controller with a disturbance observer is designed to stabilize the position error and improve the position accuracy. The stability of DSMC and the convergence of the disturbance observer are both carried out. It is shown that the tracking performances are robust to the parametric uncertainties and unknown disturbances. Eventually, different trajectory-tracking experiments are performed, and the comparative experimental results are presented to confirm the significantly better performance of the proposed control strategy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al Janaideh M, Su C-Y, Rakheja S (2008) Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Mater Struct 17:035026CrossRef Al Janaideh M, Su C-Y, Rakheja S (2008) Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Mater Struct 17:035026CrossRef
go back to reference Bashash S, Jalili N (2007) Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems. IEEE Trans Control Syst Technol 15(5):867–878CrossRef Bashash S, Jalili N (2007) Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems. IEEE Trans Control Syst Technol 15(5):867–878CrossRef
go back to reference Chen XK, Hisayama T (2008) Adaptive sliding-mode position control for piezo-actuated stage. IEEE Trans Industr Electron 55(11):3927–3934CrossRef Chen XK, Hisayama T (2008) Adaptive sliding-mode position control for piezo-actuated stage. IEEE Trans Industr Electron 55(11):3927–3934CrossRef
go back to reference Cheng L, Liu W, Hou ZG et al (2015) Neural-Network-based nonlinear model predictive control for piezoelectric actuators[J]. IEEE Trans Ind Electron 62(12):7717–7727CrossRef Cheng L, Liu W, Hou ZG et al (2015) Neural-Network-based nonlinear model predictive control for piezoelectric actuators[J]. IEEE Trans Ind Electron 62(12):7717–7727CrossRef
go back to reference Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823CrossRef Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823CrossRef
go back to reference Esbrook A, Tan X, Khalil HK (2013) Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans Control Syst Technol 21:725–738CrossRef Esbrook A, Tan X, Khalil HK (2013) Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans Control Syst Technol 21:725–738CrossRef
go back to reference Eun Y, Kim J-H, Kim K, Cho D-I (1999) Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Trans Control Syst Technol 7(4):414–423CrossRef Eun Y, Kim J-H, Kim K, Cho D-I (1999) Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Trans Control Syst Technol 7(4):414–423CrossRef
go back to reference Fillard JP (1996) Near field optics and nanoscopy. World Scientific Publ, HackensackCrossRef Fillard JP (1996) Near field optics and nanoscopy. World Scientific Publ, HackensackCrossRef
go back to reference Fleming AJ, Reza Moheimani SO (2005) Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control. IEEE Trans Contr Syst Technol 13:98–112CrossRef Fleming AJ, Reza Moheimani SO (2005) Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control. IEEE Trans Contr Syst Technol 13:98–112CrossRef
go back to reference Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Contr Syst Technol 4:209–216CrossRef Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Contr Syst Technol 4:209–216CrossRef
go back to reference Ghafarirad H, Rezaei SM, Abdullah A, Zareinejad M, Saadat M (2011) Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators. Precision Eng 35(2):271–281CrossRef Ghafarirad H, Rezaei SM, Abdullah A, Zareinejad M, Saadat M (2011) Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators. Precision Eng 35(2):271–281CrossRef
go back to reference Guo-Ying G, Yang M-J, Zhu L-M (2012) Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Rev Sci Instrum 83:065106CrossRef Guo-Ying G, Yang M-J, Zhu L-M (2012) Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Rev Sci Instrum 83:065106CrossRef
go back to reference Kuhnen K, Janocha H (2001) Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Syst 29:74–83 Kuhnen K, Janocha H (2001) Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Syst 29:74–83
go back to reference Liaw HC, Shirinzadeh B, Smith J (2008) Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans Control Syst Technol 16(4):826–833CrossRef Liaw HC, Shirinzadeh B, Smith J (2008) Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans Control Syst Technol 16(4):826–833CrossRef
go back to reference Liu W, Cheng L, Hou Z, et al. (2016) An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model[J]. IEEE/ASME Trans Mechatr 21(1):214–226 Liu W, Cheng L, Hou Z, et al. (2016) An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model[J]. IEEE/ASME Trans Mechatr 21(1):214–226
go back to reference Peng JY, Chen XB (2014) Integrated PID-based sliding mode state estimation and control for piezoelectric actuators[J]. IEEE/ASME Trans Mechatron 19(1):88–99MathSciNetCrossRef Peng JY, Chen XB (2014) Integrated PID-based sliding mode state estimation and control for piezoelectric actuators[J]. IEEE/ASME Trans Mechatron 19(1):88–99MathSciNetCrossRef
go back to reference Ping G, Musa J (1997) Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng 20:99–111CrossRef Ping G, Musa J (1997) Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng 20:99–111CrossRef
go back to reference Quant M, Elizalde H, Flores A, Ramirez R, Orta P, Song G (2009) A comprehensive model for piezoceramic actuators: modelling validation and application. Smart Mater Struct 18:125011CrossRef Quant M, Elizalde H, Flores A, Ramirez R, Orta P, Song G (2009) A comprehensive model for piezoceramic actuators: modelling validation and application. Smart Mater Struct 18:125011CrossRef
go back to reference Rakotondrabe M (2011) Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431CrossRef Rakotondrabe M (2011) Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431CrossRef
go back to reference Rana MS, Pota HR, Petersen IR (2015) Performance of sinusoidal scanning with MPC in AFM imaging [J]. IEEE/ASME Trans Mechatron 20(1):73–83CrossRef Rana MS, Pota HR, Petersen IR (2015) Performance of sinusoidal scanning with MPC in AFM imaging [J]. IEEE/ASME Trans Mechatron 20(1):73–83CrossRef
go back to reference Shen J-C, Jywe W-Y, Chiang H-K, Shu Y-L (2008) Precision tracking control of a piezoelectric-actuated system. Precision Engineering 32(2):71–78CrossRef Shen J-C, Jywe W-Y, Chiang H-K, Shu Y-L (2008) Precision tracking control of a piezoelectric-actuated system. Precision Engineering 32(2):71–78CrossRef
go back to reference Shunli X, Yangmin L (2014) Dynamic compensation and H-infinity control for piezoelectric actuators based on the inverse Bouc-Wen model. Robot Comput Integr Manuf 30(1):47–54CrossRef Shunli X, Yangmin L (2014) Dynamic compensation and H-infinity control for piezoelectric actuators based on the inverse Bouc-Wen model. Robot Comput Integr Manuf 30(1):47–54CrossRef
go back to reference Stroscio J, Kaiser K (1993) Scanning tunneling microscopy. Academic, New York Stroscio J, Kaiser K (1993) Scanning tunneling microscopy. Academic, New York
go back to reference Vahid H, Tegoeh T, Do TN (2014) A survey on hysteresis modeling, identification and control. Mech Syst Signal Process 49:209–233CrossRef Vahid H, Tegoeh T, Do TN (2014) A survey on hysteresis modeling, identification and control. Mech Syst Signal Process 49:209–233CrossRef
go back to reference Wang G, Guan C, Zhou H, Zhang X, Rao C (2013a) Hysteresis compensation of piezoelectric actuator for open loop control. Chin Optics Lett 11(s2):s21202CrossRef Wang G, Guan C, Zhou H, Zhang X, Rao C (2013a) Hysteresis compensation of piezoelectric actuator for open loop control. Chin Optics Lett 11(s2):s21202CrossRef
go back to reference Wang G, Guan C, Zhang X, Zhou H, Rao C (2013b) Design and control of miniature piezoelectric actuator based on strain gauge sensor. Optics Precision Eng 21(3):709–716 (in Chinese) CrossRef Wang G, Guan C, Zhang X, Zhou H, Rao C (2013b) Design and control of miniature piezoelectric actuator based on strain gauge sensor. Optics Precision Eng 21(3):709–716 (in Chinese) CrossRef
go back to reference Wang G, Guan C, Zhang X, Zhou H, Rao C (2014) Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model. Opt Laser Technol 57:26–31CrossRef Wang G, Guan C, Zhang X, Zhou H, Rao C (2014) Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model. Opt Laser Technol 57:26–31CrossRef
go back to reference Yi J, Chang S, Shen Y (2009) Disturbance-observer-based hysteresis compensation for piezoelectric actuators. IEEE/ASME Trans Mechatronics 14:456–464CrossRef Yi J, Chang S, Shen Y (2009) Disturbance-observer-based hysteresis compensation for piezoelectric actuators. IEEE/ASME Trans Mechatronics 14:456–464CrossRef
go back to reference Zhang AB, Wang BL (2014) The influence of Maxwell stresses on the fracture mechanics of piezoelectric materials. Mech Mater 68:64–69CrossRef Zhang AB, Wang BL (2014) The influence of Maxwell stresses on the fracture mechanics of piezoelectric materials. Mech Mater 68:64–69CrossRef
go back to reference Zhong J, Yao B (2008) Adaptive robust precision motion control of a piezoelectric positioning stage. IEEE Trans Control Syst Technol 16(5):1039–1046CrossRef Zhong J, Yao B (2008) Adaptive robust precision motion control of a piezoelectric positioning stage. IEEE Trans Control Syst Technol 16(5):1039–1046CrossRef
Metadata
Title
High precision tracking of a piezoelectric positioner using a discrete-time sliding mode control
Authors
Geng Wang
Yanru Zhao
Yeming Zhang
Chunchao Chen
Publication date
11-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 6/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2942-z

Other articles of this Issue 6/2017

Microsystem Technologies 6/2017 Go to the issue