Skip to main content
Top
Published in: Microsystem Technologies 9/2018

02-03-2018 | Technical Paper

Highly stretchable thermal interface materials with uniformly dispersed network of exfoliated graphite nanoplatelets via ball milled processing route

Authors: Tien-Chan Chang, Chun-An Liao, Zhi-Yu Lin, Yiin-Kuen Fuh

Published in: Microsystem Technologies | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ball milling is adopted to uniformly reduced the critical dimensions of the low cost chemically exfoliated graphite nanoplatelets (EGN) and embedded into the matrix of flexible polydimethylsiloxane (PDMS) for thermal interface materials (TIMs) applications. In this work, we report a method for the particle size reduction of EGN into high-quality fillers of ball-milled exfoliated graphite nanoplatelets (BMEGN) and thermally cured with PDMS to make a highly stretchable BMEGN-embedded PDMS-TIMs (BMEGN/PDMS) with improved thermal conductivity and mechanical properties. The thermal conductivity was experimentally measured for BMEGN fillers with 0–4 h ball milling time. A maximum in-plane thermal conductivity of 14.7 W/mK and through-plane thermal conductivity of 0.88 W/mK was found. Furthermore, the mechanical properties allowing the developed TIMs to bend, fold, stretch or conform to the user-specified environment, exhibits synergetic mechanical properties with outstanding flexibility. The prepared TIMs were further characterized by scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593CrossRef Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593CrossRef
go back to reference Alexandre L, Eggenberger S, Janossy H, Voros J (2014) Stretchable electronics based on Ag-PDMS composites. Sci Rep 4:7254 Alexandre L, Eggenberger S, Janossy H, Voros J (2014) Stretchable electronics based on Ag-PDMS composites. Sci Rep 4:7254
go back to reference Bai QQ, Wei X, Yang JH, Zhang N, Huang T, Wang Y, Zhou ZW (2017) Dispersion and network formation of graphene platelets in polystyrene composites and the resultant conductive properties. Composites A 96:89–98CrossRef Bai QQ, Wei X, Yang JH, Zhang N, Huang T, Wang Y, Zhou ZW (2017) Dispersion and network formation of graphene platelets in polystyrene composites and the resultant conductive properties. Composites A 96:89–98CrossRef
go back to reference Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48(13):3834–3839CrossRef Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48(13):3834–3839CrossRef
go back to reference Chang DW, Choi HJ, Jeon IY, Seo JM, Dai L, Baek JB (2014) Solvent-free mechanochemical reduction of graphene oxide. Carbon 77:501–507CrossRef Chang DW, Choi HJ, Jeon IY, Seo JM, Dai L, Baek JB (2014) Solvent-free mechanochemical reduction of graphene oxide. Carbon 77:501–507CrossRef
go back to reference Chang TC, Fuh YK, Tu SX (2015) Application of graphite nanoplatelet-based and nanoparticle composites to thermal interface materials. Micro Nano Lett 10(6):296–301CrossRef Chang TC, Fuh YK, Tu SX (2015) Application of graphite nanoplatelet-based and nanoparticle composites to thermal interface materials. Micro Nano Lett 10(6):296–301CrossRef
go back to reference Chang TC, Fuh YK, Lu HY, Tu SX (2016) Thermal management and performance evaluation of a dual bi-directional, soft-switched IGBT-based inverter for the 1st autonomous microgrid power system in Taiwan under various operating conditions. Heat Mass Transf 52:1231–1241CrossRef Chang TC, Fuh YK, Lu HY, Tu SX (2016) Thermal management and performance evaluation of a dual bi-directional, soft-switched IGBT-based inverter for the 1st autonomous microgrid power system in Taiwan under various operating conditions. Heat Mass Transf 52:1231–1241CrossRef
go back to reference Chang TC, Lee S, Fuh YK, Peng YC, Lin ZH (2017a) PCM based heat sinks of Paraffin/nanoplatelet graphite composite for thermal management of IGBT. Appl Therm Eng 112:1129–1136CrossRef Chang TC, Lee S, Fuh YK, Peng YC, Lin ZH (2017a) PCM based heat sinks of Paraffin/nanoplatelet graphite composite for thermal management of IGBT. Appl Therm Eng 112:1129–1136CrossRef
go back to reference Chang TC, Fuh YK, Lee RZ, Lin ZY (2017b) Screen printed nanostructured composites as thermal interface materials for IGBT heat dissipation applications. J Micro Nanolithogr MEMS MOEMS (JM3) 15(4):044503CrossRef Chang TC, Fuh YK, Lee RZ, Lin ZY (2017b) Screen printed nanostructured composites as thermal interface materials for IGBT heat dissipation applications. J Micro Nanolithogr MEMS MOEMS (JM3) 15(4):044503CrossRef
go back to reference Chang TC, Fuh YK, Tu SX (2017c) Screen printed graphite nanoplatelet and nanoparticle composites for thermal interface materials application. Microsyst Technol 23(4):813–819CrossRef Chang TC, Fuh YK, Tu SX (2017c) Screen printed graphite nanoplatelet and nanoparticle composites for thermal interface materials application. Microsyst Technol 23(4):813–819CrossRef
go back to reference Chang TC, Fuh YK, Lin ZY, Liao CA (2018) Ball milled dispersed network of graphene platelets as thermal interface materials for high-efficiency heat dissipation of electronic devices. J Micro Nanolithogr MEMS MOEMS (JM3) (submitted) Chang TC, Fuh YK, Lin ZY, Liao CA (2018) Ball milled dispersed network of graphene platelets as thermal interface materials for high-efficiency heat dissipation of electronic devices. J Micro Nanolithogr MEMS MOEMS (JM3) (submitted)
go back to reference Delogu F, Gorrasi G, Sorrentino A (2017) Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog Mater Sci 86:75–126CrossRef Delogu F, Gorrasi G, Sorrentino A (2017) Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog Mater Sci 86:75–126CrossRef
go back to reference Garimella SV, Fleischer AS, Murthy JY, Keshavarzi A, Prasher R, Patel C, Bhavnani SH, Venkatasubramanian R, Mahajan R, Joshi Y, Sammakia B, Myers BA, Chorosinski L, Baelmans M, Sathyamurthy P, Raad PE (2008) Thermal challenges in next-generation electronic systems. IEEE T Compon Pack T 31:801–815CrossRef Garimella SV, Fleischer AS, Murthy JY, Keshavarzi A, Prasher R, Patel C, Bhavnani SH, Venkatasubramanian R, Mahajan R, Joshi Y, Sammakia B, Myers BA, Chorosinski L, Baelmans M, Sathyamurthy P, Raad PE (2008) Thermal challenges in next-generation electronic systems. IEEE T Compon Pack T 31:801–815CrossRef
go back to reference Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS (2015) Thermal performance of inclined screen mesh heat pipes using silver nanofluids. Int Commun Heat Mass 67:14–20CrossRef Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS (2015) Thermal performance of inclined screen mesh heat pipes using silver nanofluids. Int Commun Heat Mass 67:14–20CrossRef
go back to reference Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energ Mat Sol C 93:136–142CrossRef Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energ Mat Sol C 93:136–142CrossRef
go back to reference Lee JY, Liao Y, Nagahata R, Horiuchi S (2006) Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer 47(23):7970–7979CrossRef Lee JY, Liao Y, Nagahata R, Horiuchi S (2006) Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer 47(23):7970–7979CrossRef
go back to reference Li YB, Wei BQ, Liang J, Yu Q, Wu DH (1999) Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37:493–497CrossRef Li YB, Wei BQ, Liang J, Yu Q, Wu DH (1999) Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37:493–497CrossRef
go back to reference Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20:8446–8453CrossRef Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20:8446–8453CrossRef
go back to reference Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. P IEEE 94:1571–1586CrossRef Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. P IEEE 94:1571–1586CrossRef
go back to reference Prasher RS, Shipley J, Prstic S, Koning P, Wang JL (2003) Thermal resistance of particle laden polymeric thermal interface materials. J Heat Transf 125:1170–1177CrossRef Prasher RS, Shipley J, Prstic S, Koning P, Wang JL (2003) Thermal resistance of particle laden polymeric thermal interface materials. J Heat Transf 125:1170–1177CrossRef
go back to reference Renteria JD, Nika DL, Balandin AA (2014) Graphene thermal properties: applications in thermal management and energy storage. Appl Sci 4(4):525–547CrossRef Renteria JD, Nika DL, Balandin AA (2014) Graphene thermal properties: applications in thermal management and energy storage. Appl Sci 4(4):525–547CrossRef
go back to reference Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30–35CrossRef Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30–35CrossRef
go back to reference Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 51:365–372CrossRef Shi JN, Ger MD, Liu YM, Fan YC, Wen NT, Lin CK, Pu NW (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 51:365–372CrossRef
go back to reference Song WL, Ping W, Cao L, Ankoma A, Mohammed JM, Andrew JF, Ping (2012) YS‘Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501CrossRef Song WL, Ping W, Cao L, Ankoma A, Mohammed JM, Andrew JF, Ping (2012) YS‘Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501CrossRef
go back to reference Tian X, Itkis ME, Bekyarova EB, Haddon RC (2013) Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Sci Rep 10:01710CrossRef Tian X, Itkis ME, Bekyarova EB, Haddon RC (2013) Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Sci Rep 10:01710CrossRef
go back to reference Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21:2088–2092CrossRef Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21:2088–2092CrossRef
go back to reference Xiang J, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49:773–778CrossRef Xiang J, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49:773–778CrossRef
go back to reference Xu YS, Chung DDL (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interface 7:243–256CrossRef Xu YS, Chung DDL (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interface 7:243–256CrossRef
go back to reference Zhao YH, Wu ZK, Bai SL (2015) Study on thermal properties of graphenefoam/graphene sheets filled polymer composites. Composites A 72:200–206CrossRef Zhao YH, Wu ZK, Bai SL (2015) Study on thermal properties of graphenefoam/graphene sheets filled polymer composites. Composites A 72:200–206CrossRef
go back to reference Zhao YH, Zhang YF, Bai SL (2016) High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Composites A 85:148–155CrossRef Zhao YH, Zhang YF, Bai SL (2016) High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Composites A 85:148–155CrossRef
Metadata
Title
Highly stretchable thermal interface materials with uniformly dispersed network of exfoliated graphite nanoplatelets via ball milled processing route
Authors
Tien-Chan Chang
Chun-An Liao
Zhi-Yu Lin
Yiin-Kuen Fuh
Publication date
02-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 9/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3811-8

Other articles of this Issue 9/2018

Microsystem Technologies 9/2018 Go to the issue