Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2019

28-03-2019 | Review

Hydrogen sensors: palladium-based electrode

Authors: Ghobad Behzadi Pour, Leila Fekri Aval, Mehdi Nasiri Sarvi, Sedigheh Fekri Aval, Hamed Nazarpour Fard

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogen sensors are transducer devices and able to convert the hydrogen concentration in the environment to an electrical signal. The detection and monitoring of hydrogen gas under the explosive limit is the essential issue for its applications as the chemical reactant and energy resource. In this study, the sensing mechanism and principle of the palladium-based hydrogen gas sensors are firstly reported. Then, the physical sensing parameter, measuring range, response time and recovery time of the different hydrogen gas sensors are also reviewed. Moreover, the high response speed hydrogen sensors are introduced for practical usages.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Behzadi Pour, L.F. Aval, Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature. Results Phys. 7, 1993–1999 (2017)CrossRef G. Behzadi Pour, L.F. Aval, Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature. Results Phys. 7, 1993–1999 (2017)CrossRef
2.
go back to reference G. Behzadi Pour, L.F. Aval, Comparison of fast response and recovery Pd nanoparticles and Ni thin film hydrogen gas sensors based on metal-oxide-semiconductor structure. Nano 12(8), 1750096 (2017)CrossRef G. Behzadi Pour, L.F. Aval, Comparison of fast response and recovery Pd nanoparticles and Ni thin film hydrogen gas sensors based on metal-oxide-semiconductor structure. Nano 12(8), 1750096 (2017)CrossRef
3.
go back to reference G. Behzadi Pour, L.F. Aval, Monitoring of hydrogen concentration using capacitive nanosensor in a 1% H2–N2 mixture. Micro Nano Lett. 13, 149–153 (2018)CrossRef G. Behzadi Pour, L.F. Aval, Monitoring of hydrogen concentration using capacitive nanosensor in a 1% H2–N2 mixture. Micro Nano Lett. 13, 149–153 (2018)CrossRef
4.
go back to reference L.B. Hubert, T. Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B 157, 329–352 (2011)CrossRef L.B. Hubert, T. Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B 157, 329–352 (2011)CrossRef
5.
go back to reference L.F. Aval, S.M. Elahi, Hydrogen gas detection using MOS capacitor sensor based on palladium nanoparticles-gate. Electron. Mater. Lett. 13, 77–85 (2017)CrossRef L.F. Aval, S.M. Elahi, Hydrogen gas detection using MOS capacitor sensor based on palladium nanoparticles-gate. Electron. Mater. Lett. 13, 77–85 (2017)CrossRef
6.
go back to reference G. Behzadi Pour, Electrical properties of the MOS capacitor hydrogen sensor based on the Ni/SiO2/Si structure. J. Nanoelectron. Optoelectron. 12, 130–135 (2017)CrossRef G. Behzadi Pour, Electrical properties of the MOS capacitor hydrogen sensor based on the Ni/SiO2/Si structure. J. Nanoelectron. Optoelectron. 12, 130–135 (2017)CrossRef
7.
go back to reference G. Behzadi Pour, L.F. Aval, S. Eslami, Sensitive capacitive-type hydrogen sensor based on Ni thin film in different hydrogen concentrations. Curr. Nanosci. 14, 136–142 (2018) G. Behzadi Pour, L.F. Aval, S. Eslami, Sensitive capacitive-type hydrogen sensor based on Ni thin film in different hydrogen concentrations. Curr. Nanosci. 14, 136–142 (2018)
8.
go back to reference F.A. Lewis, The Palladium Hydrogen System (Academic press, New York, 1967) F.A. Lewis, The Palladium Hydrogen System (Academic press, New York, 1967)
9.
go back to reference M.G. Chung and et al., Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387–392 (2012)CrossRef M.G. Chung and et al., Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387–392 (2012)CrossRef
10.
go back to reference E. Kowalska, E. Czerwosz, A. Kaminska, M. Kozłowski, Investigation of Pd content in C–Pd films for hydrogen sensor applications. J. Therm. Anal. Calorim. 108, 1017–1023 (2012)CrossRef E. Kowalska, E. Czerwosz, A. Kaminska, M. Kozłowski, Investigation of Pd content in C–Pd films for hydrogen sensor applications. J. Therm. Anal. Calorim. 108, 1017–1023 (2012)CrossRef
11.
go back to reference D.T. Phan, G.S. Chung, A novel Pd nanocube–graphene hybrid for hydrogen detection. Sens. Actuators B 199, 354–360 (2014)CrossRef D.T. Phan, G.S. Chung, A novel Pd nanocube–graphene hybrid for hydrogen detection. Sens. Actuators B 199, 354–360 (2014)CrossRef
12.
go back to reference R.D.M. Orozco, R.A. López. V.R. González, Hydrogen-gas sensors based on graphene functionalized palladium nanoparticles: the impedance response as a valuable sensor evaluation. New J. Chem. 10, 1–12 (2015) R.D.M. Orozco, R.A. López. V.R. González, Hydrogen-gas sensors based on graphene functionalized palladium nanoparticles: the impedance response as a valuable sensor evaluation. New J. Chem. 10, 1–12 (2015)
13.
go back to reference D.T. Phan, G.S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrog. Energy 39, 620–629 (2014)CrossRef D.T. Phan, G.S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrog. Energy 39, 620–629 (2014)CrossRef
14.
go back to reference V. Singh, S. Dhall, A. Kaushal, B.R. Mehta, Room temperature response and enhanced hydrogen sensing in size selected Pd-C core-shell nanoparticles: role of carbon shell and Pd-C interface. Int. J. Hydrog. Energy 43, 1025–1033 (2017)CrossRef V. Singh, S. Dhall, A. Kaushal, B.R. Mehta, Room temperature response and enhanced hydrogen sensing in size selected Pd-C core-shell nanoparticles: role of carbon shell and Pd-C interface. Int. J. Hydrog. Energy 43, 1025–1033 (2017)CrossRef
15.
go back to reference R. Kumar, S. Malik, B.R. Mehta, Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers. Sens. Actuators B 209, 919–926 (2015)CrossRef R. Kumar, S. Malik, B.R. Mehta, Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers. Sens. Actuators B 209, 919–926 (2015)CrossRef
16.
go back to reference D.T. Phan, G.S. Chung, Reliability of hydrogen sensing based on bimetallic NiePd/graphene composites. Int. J. Hydrog. Energy 39, 20249–20304 (2014) D.T. Phan, G.S. Chung, Reliability of hydrogen sensing based on bimetallic NiePd/graphene composites. Int. J. Hydrog. Energy 39, 20249–20304 (2014)
17.
go back to reference Y. Zou, Q. Wang, C. Xiang, C. Tang, H. Chu, S. Qiu, E. Yan, F. Xu, L. Sun, Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. Int. J. Hydrog. Energy 41, 5396–5404 (2016)CrossRef Y. Zou, Q. Wang, C. Xiang, C. Tang, H. Chu, S. Qiu, E. Yan, F. Xu, L. Sun, Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. Int. J. Hydrog. Energy 41, 5396–5404 (2016)CrossRef
18.
go back to reference S. Raghu, P.N. Santhosh, S. Ramaprabhu, Nanostructured palladium modified graphitic carbon nitride eHigh performance room temperature hydrogen sensor. Int. J. Hydrog. Energy 41, 20779–20786 (2016)CrossRef S. Raghu, P.N. Santhosh, S. Ramaprabhu, Nanostructured palladium modified graphitic carbon nitride eHigh performance room temperature hydrogen sensor. Int. J. Hydrog. Energy 41, 20779–20786 (2016)CrossRef
19.
go back to reference M. Han, D. Jung, G.S. Lee, Palladium-nanoparticle-coated carbon nanotube gas sensor. Chem. Phys. Lett. 610–611, 261–266 (2014)CrossRef M. Han, D. Jung, G.S. Lee, Palladium-nanoparticle-coated carbon nanotube gas sensor. Chem. Phys. Lett. 610–611, 261–266 (2014)CrossRef
20.
go back to reference J.H. Leea, W.S. Kanga, C.K. Najeeba, B.S. Choia, S.W. Choib, H.J. Leec, S.S. Leec, J.H. Kima, A hydrogen gas sensor using single-walled carbon nanotube Langmuir–Blodgett films decorated with palladium nanoparticles. Sens. Actuators B 188, 169–175 (2013)CrossRef J.H. Leea, W.S. Kanga, C.K. Najeeba, B.S. Choia, S.W. Choib, H.J. Leec, S.S. Leec, J.H. Kima, A hydrogen gas sensor using single-walled carbon nanotube Langmuir–Blodgett films decorated with palladium nanoparticles. Sens. Actuators B 188, 169–175 (2013)CrossRef
21.
go back to reference S. Mubeen, T. Zhang, B. Yoo, M.A. Deshusses, N.V. Myung, Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J. Phys. Chem. C 111, 6321–6327 (2007)CrossRef S. Mubeen, T. Zhang, B. Yoo, M.A. Deshusses, N.V. Myung, Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J. Phys. Chem. C 111, 6321–6327 (2007)CrossRef
22.
go back to reference H.H. Sun, Y. Wang, M. Xia, Single-walled carbon nanotubes modified with pd nanoparticles: unique building blocks for high-performance, flexible hydrogen sensors. J. Phys. Chem. C 112, 1250–1259 (2008)CrossRef H.H. Sun, Y. Wang, M. Xia, Single-walled carbon nanotubes modified with pd nanoparticles: unique building blocks for high-performance, flexible hydrogen sensors. J. Phys. Chem. C 112, 1250–1259 (2008)CrossRef
23.
go back to reference Y. Suna, H.H. Wang, Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, 213107 (2007)CrossRef Y. Suna, H.H. Wang, Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, 213107 (2007)CrossRef
24.
go back to reference J.G. Aguilar, I.M. Garcı´a, A.B. Murcia, D.C. Amoro´s, Single wall carbon nanotubes loaded with Pd and NiPd nanoparticles for H2 sensing at room temperature. Carbon 66, 599–611 (2014)CrossRef J.G. Aguilar, I.M. Garcı´a, A.B. Murcia, D.C. Amoro´s, Single wall carbon nanotubes loaded with Pd and NiPd nanoparticles for H2 sensing at room temperature. Carbon 66, 599–611 (2014)CrossRef
25.
go back to reference G. Behzadi, H. Golnabi, Comparison of invasive and non-invasive cylindrical capacitive sensors for electrical measurements of different water solutions and mixtures. Sens. Actuators A 167, 359–366 (2011)CrossRef G. Behzadi, H. Golnabi, Comparison of invasive and non-invasive cylindrical capacitive sensors for electrical measurements of different water solutions and mixtures. Sens. Actuators A 167, 359–366 (2011)CrossRef
26.
go back to reference G. Behzadi, L. Fekri, Electrical parameter and permittivity measurement of water samples using the capacitive sensor. Int. J. Water Res. Environ. Sci. 2, 66–75 (2013) G. Behzadi, L. Fekri, Electrical parameter and permittivity measurement of water samples using the capacitive sensor. Int. J. Water Res. Environ. Sci. 2, 66–75 (2013)
27.
go back to reference G. Behzadi, L. Fekri, H. Golnabi, Effect of the reactance term on the charge/discharge electrical measurement using cylindrical capacitive probes. J. Appl. Sci. 11, 3293–3300 (2011)CrossRef G. Behzadi, L. Fekri, H. Golnabi, Effect of the reactance term on the charge/discharge electrical measurement using cylindrical capacitive probes. J. Appl. Sci. 11, 3293–3300 (2011)CrossRef
28.
go back to reference G. Behzadi, H. Golnabi, Monitoring temperature variation of reactance capacitance of water using a cylindrical cell probe. J. Appl. Sci. 9, 752–758 (2009)CrossRef G. Behzadi, H. Golnabi, Monitoring temperature variation of reactance capacitance of water using a cylindrical cell probe. J. Appl. Sci. 9, 752–758 (2009)CrossRef
29.
go back to reference G. Behzadi, H. Golnabi, Investigation of conductivity effects on capacitance measurements of water liquids using a cylindrical capacitive sensor. J. Appl. Sci. 10, 261–268 (2010)CrossRef G. Behzadi, H. Golnabi, Investigation of conductivity effects on capacitance measurements of water liquids using a cylindrical capacitive sensor. J. Appl. Sci. 10, 261–268 (2010)CrossRef
30.
go back to reference L. Fekri Aval, S.M. Elahi, E. Darabi, S.A. Sebt, Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)CrossRef L. Fekri Aval, S.M. Elahi, E. Darabi, S.A. Sebt, Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)CrossRef
31.
go back to reference K.P. Kamloth, Semiconductor junction gas sensors. Chem. Rev. 108, 367–399 (2008)CrossRef K.P. Kamloth, Semiconductor junction gas sensors. Chem. Rev. 108, 367–399 (2008)CrossRef
32.
go back to reference V.I. Gaman et al., Mechanism of formation of the response of a hydrogen gas sensor based on a silicon MOS diode. Semiconductors 42, 334–338 (2008)CrossRef V.I. Gaman et al., Mechanism of formation of the response of a hydrogen gas sensor based on a silicon MOS diode. Semiconductors 42, 334–338 (2008)CrossRef
33.
go back to reference B. Sharma, A. Sharma, J.S. Kim, Recent advances on H2 sensor technologies based on MOX and FET devices: a review. Sens. Actuators B 262, 758–770 (2018)CrossRef B. Sharma, A. Sharma, J.S. Kim, Recent advances on H2 sensor technologies based on MOX and FET devices: a review. Sens. Actuators B 262, 758–770 (2018)CrossRef
34.
go back to reference S.J. Joo, Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films. J. Korean Phys. Soc. 63, 1794–1798 (2013)CrossRef S.J. Joo, Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films. J. Korean Phys. Soc. 63, 1794–1798 (2013)CrossRef
35.
go back to reference P.C. Chou et al., On a Schottky diode-type hydrogen sensor with pyramid-like Pd nanostructures. Int. J. Hydrog. Energy 40, 9006–9012 (2015)CrossRef P.C. Chou et al., On a Schottky diode-type hydrogen sensor with pyramid-like Pd nanostructures. Int. J. Hydrog. Energy 40, 9006–9012 (2015)CrossRef
36.
go back to reference H.I. Chen et al., Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode. Sens. Actuators B 262, 852–859 (2018)CrossRef H.I. Chen et al., Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode. Sens. Actuators B 262, 852–859 (2018)CrossRef
37.
go back to reference K. Zdansky, Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles. Nanoscale Res. Lett. 6, 490:2–10 (2011)CrossRef K. Zdansky, Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles. Nanoscale Res. Lett. 6, 490:2–10 (2011)CrossRef
38.
go back to reference H.I. Chen et al., Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode. Sens. Actuators B 246, 408–414 (2017)CrossRef H.I. Chen et al., Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode. Sens. Actuators B 246, 408–414 (2017)CrossRef
39.
go back to reference S. Lundstrom, I. Shivaraman, C. Svensson, L. Lundkvist, A hydrogen—sensitive MOS field—effect transistor. Appl. Phys. Lett. 26, 55–57 (1975)CrossRef S. Lundstrom, I. Shivaraman, C. Svensson, L. Lundkvist, A hydrogen—sensitive MOS field—effect transistor. Appl. Phys. Lett. 26, 55–57 (1975)CrossRef
40.
go back to reference L. Stiblert, C. Svensson, Hydrogen leak detector using a Pd-gate MOS transistor. Rev. Sci. Instrum. 46, 1206–1208 (1975)CrossRef L. Stiblert, C. Svensson, Hydrogen leak detector using a Pd-gate MOS transistor. Rev. Sci. Instrum. 46, 1206–1208 (1975)CrossRef
41.
go back to reference Y. Luo, C. Zhang, B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrog. Energy 42, 20386–20397 (2017)CrossRef Y. Luo, C. Zhang, B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrog. Energy 42, 20386–20397 (2017)CrossRef
42.
go back to reference N. Kien et al., Low-temperature prototype hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications. Sens. Actuators B 253, 156–163 (2017) N. Kien et al., Low-temperature prototype hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications. Sens. Actuators B 253, 156–163 (2017)
43.
go back to reference A.I. Ayesh, S.T. Mahmoud, S.J. Ahmad, Y. Haik, Novel hydrogen gas sensor based on Pd and SnO2 nanoclusters. Mater. Lett. 128, 354–357 (2014)CrossRef A.I. Ayesh, S.T. Mahmoud, S.J. Ahmad, Y. Haik, Novel hydrogen gas sensor based on Pd and SnO2 nanoclusters. Mater. Lett. 128, 354–357 (2014)CrossRef
44.
go back to reference R. Deivasegamani et al., Chemoresistive sensor for hydrogen using thin films of tin dioxide doped with cerium and palladium. Microchim. Acta 12, 4765–4773 (2017)CrossRef R. Deivasegamani et al., Chemoresistive sensor for hydrogen using thin films of tin dioxide doped with cerium and palladium. Microchim. Acta 12, 4765–4773 (2017)CrossRef
45.
go back to reference I.H. Kadhim, H.A. Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano Micro Lett. 8, 20–28 (2016)CrossRef I.H. Kadhim, H.A. Hassan, Q.N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano Micro Lett. 8, 20–28 (2016)CrossRef
46.
go back to reference E.V. Sokovykh, L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, Influence of conditions of Pd/SnO2 nanomaterial formation on properties of hydrogen sensors. Nanoscale Res. Lett. 12, 383 (2017)CrossRef E.V. Sokovykh, L.P. Oleksenko, N.P. Maksymovych, I.P. Matushko, Influence of conditions of Pd/SnO2 nanomaterial formation on properties of hydrogen sensors. Nanoscale Res. Lett. 12, 383 (2017)CrossRef
47.
go back to reference D. Zhang, Y. Sun, C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sens. Actuators B 242, 15–24 (2017)CrossRef D. Zhang, Y. Sun, C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sens. Actuators B 242, 15–24 (2017)CrossRef
48.
go back to reference C. Ling et al., Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions. Sens. Actuators B 227, 438–447 (2016)CrossRef C. Ling et al., Room temperature hydrogen sensor with ultrahigh-responsive characteristics based on Pd/SnO2/SiO2/Si heterojunctions. Sens. Actuators B 227, 438–447 (2016)CrossRef
49.
go back to reference J. Kaur, K. Anand, N. Kohli, A. Kaur, R.C. Singh, Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite. Chem. Phys. Lett. 701, 115–125 (2018)CrossRef J. Kaur, K. Anand, N. Kohli, A. Kaur, R.C. Singh, Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite. Chem. Phys. Lett. 701, 115–125 (2018)CrossRef
50.
go back to reference C.H. Wu, Z. Zhu, S.Y. Huang, R.J. Wu, Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J. Alloys Compd. 776, 965–973 (2019)CrossRef C.H. Wu, Z. Zhu, S.Y. Huang, R.J. Wu, Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J. Alloys Compd. 776, 965–973 (2019)CrossRef
51.
go back to reference A. Boudiba et al., Preparation of highly selective, sensitive and stable hydrogen sensors based on Pd-doped tungsten trioxide. Procedia Eng. 5, 180–183 (2010)CrossRef A. Boudiba et al., Preparation of highly selective, sensitive and stable hydrogen sensors based on Pd-doped tungsten trioxide. Procedia Eng. 5, 180–183 (2010)CrossRef
52.
go back to reference A. Boudiba et al., Sensitive and rapid hydrogen sensors based on PdeWO3 thick films with different morphologies. Int. J. Hydrog. Energy 38, 2565–2577 (2013)CrossRef A. Boudiba et al., Sensitive and rapid hydrogen sensors based on PdeWO3 thick films with different morphologies. Int. J. Hydrog. Energy 38, 2565–2577 (2013)CrossRef
53.
go back to reference M. Chen et al., Tandem gasochromic-Pd-WO3/graphene/Si device for room-temperature high performance optoelectronic hydrogen sensors. Carbon 130, 281–287 (2018)CrossRef M. Chen et al., Tandem gasochromic-Pd-WO3/graphene/Si device for room-temperature high performance optoelectronic hydrogen sensors. Carbon 130, 281–287 (2018)CrossRef
54.
go back to reference Z. Wang, S. Huang, G. Men, D. Han, F. Gu, Sensitization of Pd loading for remarkably enhanced hydrogensensing performance of 3DOM WO3. Sens. Actuators B 262, 577–587 (2018)CrossRef Z. Wang, S. Huang, G. Men, D. Han, F. Gu, Sensitization of Pd loading for remarkably enhanced hydrogensensing performance of 3DOM WO3. Sens. Actuators B 262, 577–587 (2018)CrossRef
55.
go back to reference Y. Liu, W.M. Tang, P.T. Lai, A comparative study of Hf and Ta incorporations in the dielectric of Pd-WO3-SiC Schottky-diode hydrogen sensor. Sens. Actuators B 259, 725–729 (2018)CrossRef Y. Liu, W.M. Tang, P.T. Lai, A comparative study of Hf and Ta incorporations in the dielectric of Pd-WO3-SiC Schottky-diode hydrogen sensor. Sens. Actuators B 259, 725–729 (2018)CrossRef
56.
go back to reference S. Mao et al., High performance hydrogen sensor based on Pd/TiO2 composite film. Int. J. Hydrog. Energy 43, 22727–22732 (2018)CrossRef S. Mao et al., High performance hydrogen sensor based on Pd/TiO2 composite film. Int. J. Hydrog. Energy 43, 22727–22732 (2018)CrossRef
57.
go back to reference J. Moon et al., Hydrogen sensor of Pd–decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators B 222, 190–197 (2016)CrossRef J. Moon et al., Hydrogen sensor of Pd–decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators B 222, 190–197 (2016)CrossRef
58.
go back to reference J.A. Woo, D.T. Phan, Y.W. Jung, K.J. Jeon, Fast response of hydrogen sensor using palladium nanocube-TiO2 nanofiber composites. Int. J. Hydrog. Energy 29, 18754–18761 (2017)CrossRef J.A. Woo, D.T. Phan, Y.W. Jung, K.J. Jeon, Fast response of hydrogen sensor using palladium nanocube-TiO2 nanofiber composites. Int. J. Hydrog. Energy 29, 18754–18761 (2017)CrossRef
59.
go back to reference C. Xiang et al., A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram. Int. 40, 16343–16348 (2014)CrossRef C. Xiang et al., A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram. Int. 40, 16343–16348 (2014)CrossRef
60.
go back to reference Y. Zou et al., Pd-doped TiO2@polypyrrole core-shell composites as hydrogen-sensing materials. Ceram. Int. 42, 8257–8262 (2016)CrossRef Y. Zou et al., Pd-doped TiO2@polypyrrole core-shell composites as hydrogen-sensing materials. Ceram. Int. 42, 8257–8262 (2016)CrossRef
61.
go back to reference O. Lupan et al., Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B 254, 1259–1270 (2018)CrossRef O. Lupan et al., Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B 254, 1259–1270 (2018)CrossRef
62.
go back to reference H. Kim, Y. Pak, Y. Jeong, W. Kim, J. Kim, G.Y. Jung, Amorphous Pd-assisted H2 detection of ZnO nanorods gas sensor with enhanced sensitivity and stability. Sens. Actuators B 262, 460–468 (2018)CrossRef H. Kim, Y. Pak, Y. Jeong, W. Kim, J. Kim, G.Y. Jung, Amorphous Pd-assisted H2 detection of ZnO nanorods gas sensor with enhanced sensitivity and stability. Sens. Actuators B 262, 460–468 (2018)CrossRef
63.
go back to reference Y. Sun, D. Zhang, H. Chang, Y. Zhang, Fabrication of palladium–zinc oxide–reduced graphene oxide hybrid for hydrogen gas detection at low working temperature. J. Mater. Sci: Mater. Electron. 28, 1667–1673 (2017) Y. Sun, D. Zhang, H. Chang, Y. Zhang, Fabrication of palladium–zinc oxide–reduced graphene oxide hybrid for hydrogen gas detection at low working temperature. J. Mater. Sci: Mater. Electron. 28, 1667–1673 (2017)
64.
go back to reference K. Vijayalakshmi, A. Renitta, A. Monamary, Substantial effect of Pd incorporation on the room temperature hydrogen sensing performance of ZnO/ITO nanowires prepared by spray pyrolysis method. J. Mater. Sci: Mater. Electron. 29, 21023–21032 (2018) K. Vijayalakshmi, A. Renitta, A. Monamary, Substantial effect of Pd incorporation on the room temperature hydrogen sensing performance of ZnO/ITO nanowires prepared by spray pyrolysis method. J. Mater. Sci: Mater. Electron. 29, 21023–21032 (2018)
65.
go back to reference A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018)CrossRef A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018)CrossRef
66.
go back to reference L. Chen et al., Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection. J. Mater. Sci: Mater. Electron. 27, 11331–11338 (2016) L. Chen et al., Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection. J. Mater. Sci: Mater. Electron. 27, 11331–11338 (2016)
67.
go back to reference D.T. Phan, G.S. Chung, Reliability of hydrogen sensing based on bimetallic Ni-Pd/graphene composites. Int. J. Hydrog. Energy 39, 20294–20304 (2014)CrossRef D.T. Phan, G.S. Chung, Reliability of hydrogen sensing based on bimetallic Ni-Pd/graphene composites. Int. J. Hydrog. Energy 39, 20294–20304 (2014)CrossRef
68.
go back to reference B. Wang et al., Hydrogen sensor based on palladium-yttrium alloy nanosheets. Mater. Chem. Phys. 194, 231–235 (2017)CrossRef B. Wang et al., Hydrogen sensor based on palladium-yttrium alloy nanosheets. Mater. Chem. Phys. 194, 231–235 (2017)CrossRef
69.
go back to reference S. Wu et al., Fast response hydrogen sensors based on anodic aluminum oxide with pore- widening treatment. Appl. Surf. Sci. 380, 47–51 (2016)CrossRef S. Wu et al., Fast response hydrogen sensors based on anodic aluminum oxide with pore- widening treatment. Appl. Surf. Sci. 380, 47–51 (2016)CrossRef
70.
go back to reference B. Sharma, J.S. Kim, Pd/Ag alloy as an application for hydrogen sensing. Int. J. Hydrog. Energy 42, 25446–25452 (2017)CrossRef B. Sharma, J.S. Kim, Pd/Ag alloy as an application for hydrogen sensing. Int. J. Hydrog. Energy 42, 25446–25452 (2017)CrossRef
71.
go back to reference B. Sharma, J.S. Kim, Graphene decorated Pd-Ag nanoparticles for H2 Sensing. Int. J. Hydrog. Energy 43, 11397–11402 (2018)CrossRef B. Sharma, J.S. Kim, Graphene decorated Pd-Ag nanoparticles for H2 Sensing. Int. J. Hydrog. Energy 43, 11397–11402 (2018)CrossRef
72.
go back to reference R.J. Westerwaal et al., Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures. Int. J. Hydrog. Energy 38, 4201–4212 (2013)CrossRef R.J. Westerwaal et al., Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures. Int. J. Hydrog. Energy 38, 4201–4212 (2013)CrossRef
73.
go back to reference A.I. Ayesh, Linear hydrogen gas sensors based on bimetallic nanoclusters. J. Alloys Compd. 689, 1–5 (2016)CrossRef A.I. Ayesh, Linear hydrogen gas sensors based on bimetallic nanoclusters. J. Alloys Compd. 689, 1–5 (2016)CrossRef
74.
go back to reference Y.K. Gautam, A. Sanger, A. Kumar, R. Chandra, A room temperature hydrogen sensor based on Pd-Mg alloy and multilayers prepared by magnetron sputtering. Int. J. Hydrog. Energy 40, 15549–15555 (2015)CrossRef Y.K. Gautam, A. Sanger, A. Kumar, R. Chandra, A room temperature hydrogen sensor based on Pd-Mg alloy and multilayers prepared by magnetron sputtering. Int. J. Hydrog. Energy 40, 15549–15555 (2015)CrossRef
75.
go back to reference E. Lee et al., Pd-Ni hydrogen sponge for highly sensitive nanogap-based hydrogen sensors. Int. J. Hydrog. Energy 37, 14702–14706 (2012)CrossRef E. Lee et al., Pd-Ni hydrogen sponge for highly sensitive nanogap-based hydrogen sensors. Int. J. Hydrog. Energy 37, 14702–14706 (2012)CrossRef
76.
go back to reference D.H. Baek, J. Kim, Few-layered MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators B 250, 686–691 (2017)CrossRef D.H. Baek, J. Kim, Few-layered MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators B 250, 686–691 (2017)CrossRef
77.
go back to reference K. Hassan, A.S.M. Iftekhar Uddin, G.S. Chung, Mesh of ultrasmall Pd/Mg bimetallic nanowires as fast response wearable hydrogen sensors formed on filtration membrane. Sens. Actuators B 252, 1035–1044 (2017)CrossRef K. Hassan, A.S.M. Iftekhar Uddin, G.S. Chung, Mesh of ultrasmall Pd/Mg bimetallic nanowires as fast response wearable hydrogen sensors formed on filtration membrane. Sens. Actuators B 252, 1035–1044 (2017)CrossRef
78.
go back to reference J. Li, H. Hu, C. Yao, Hydrogen sensing performance of silica microfiber elaborated with Pd nanoparticles. Mater. Lett. 212, 211–213 (2018)CrossRef J. Li, H. Hu, C. Yao, Hydrogen sensing performance of silica microfiber elaborated with Pd nanoparticles. Mater. Lett. 212, 211–213 (2018)CrossRef
79.
go back to reference A. Kumar, A. Kumar, R. Chandra, Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor. Sens. Actuators B 264, 10–19 (2018)CrossRef A. Kumar, A. Kumar, R. Chandra, Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor. Sens. Actuators B 264, 10–19 (2018)CrossRef
80.
go back to reference R. Prakash, A. Kumar, D. Kaur, Pd capped W2N nano porous thin films for remarkable room temperature hydrogen gas sensing performance. Sens. Actuators B 277, 665–672 (2018)CrossRef R. Prakash, A. Kumar, D. Kaur, Pd capped W2N nano porous thin films for remarkable room temperature hydrogen gas sensing performance. Sens. Actuators B 277, 665–672 (2018)CrossRef
81.
go back to reference T. Wu et al., Highly sensitive hydrogen sensor based on Pd-functionalized titania nanotubes prepared in water-contained electrolyte. J. Mater. Sci: Mater. Electron. 28, 1428–1432 (2017) T. Wu et al., Highly sensitive hydrogen sensor based on Pd-functionalized titania nanotubes prepared in water-contained electrolyte. J. Mater. Sci: Mater. Electron. 28, 1428–1432 (2017)
82.
go back to reference F.A. Lewis, The palladium hydrogen system: structures near phase transition and critical points. Int. J. Hydrog. Energy 20, 587–592 (1995)CrossRef F.A. Lewis, The palladium hydrogen system: structures near phase transition and critical points. Int. J. Hydrog. Energy 20, 587–592 (1995)CrossRef
83.
go back to reference S.F. Silva, L. Coelho, O. Frazao, J.L. Santos, F.X. Malcata, A review of palladium-based fiber-optic sensors for molecular hydrogen detection. IEEE Sens. J. 12, 93–102 (2012)CrossRef S.F. Silva, L. Coelho, O. Frazao, J.L. Santos, F.X. Malcata, A review of palladium-based fiber-optic sensors for molecular hydrogen detection. IEEE Sens. J. 12, 93–102 (2012)CrossRef
84.
go back to reference Y. Li, C. Zhao, B. Xu, D. Wang, M. Yang, Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect. Opt. Commun. 414, 166–171 (2018)CrossRef Y. Li, C. Zhao, B. Xu, D. Wang, M. Yang, Optical cascaded Fabry–Perot interferometer hydrogen sensor based on vernier effect. Opt. Commun. 414, 166–171 (2018)CrossRef
85.
go back to reference H. Song et al., Optical fiber hydrogen sensor based on an annealing-stimulated Pd–Ythin film. Sens. Actuators B 216, 11–16 (2015)CrossRef H. Song et al., Optical fiber hydrogen sensor based on an annealing-stimulated Pd–Ythin film. Sens. Actuators B 216, 11–16 (2015)CrossRef
86.
go back to reference W.L. Watkins, Y. Borensztein, Ultrasensitive and fast single wavelength plasmonic hydrogen sensing with anisotropic nanostructured Pd films. Sens. Actuators B 273, 527–535 (2018)CrossRef W.L. Watkins, Y. Borensztein, Ultrasensitive and fast single wavelength plasmonic hydrogen sensing with anisotropic nanostructured Pd films. Sens. Actuators B 273, 527–535 (2018)CrossRef
87.
go back to reference H. Yan et al., A fast response hydrogen sensor with Pd metallic grating onto a fiber’s end-face. Opt. Commun. 359, 157–161 (2016)CrossRef H. Yan et al., A fast response hydrogen sensor with Pd metallic grating onto a fiber’s end-face. Opt. Commun. 359, 157–161 (2016)CrossRef
88.
go back to reference Q. Zhao et al., Batch fabrication of nanogap electrodes arrays with controllable cracking for hydrogen sensing. Sens. Actuators B 270, 475–481 (2018)CrossRef Q. Zhao et al., Batch fabrication of nanogap electrodes arrays with controllable cracking for hydrogen sensing. Sens. Actuators B 270, 475–481 (2018)CrossRef
89.
go back to reference T.Y. Hu et al., Miniature hydrogen sensor based on fiber inner cavity and Pt-doped WO3 coating. IEEE Photon. Technol. Lett. 26, 1458–1461 (2014)CrossRef T.Y. Hu et al., Miniature hydrogen sensor based on fiber inner cavity and Pt-doped WO3 coating. IEEE Photon. Technol. Lett. 26, 1458–1461 (2014)CrossRef
90.
go back to reference Y.H. Kim et al., Ultra-sensitive fiber-optic hydrogen sensor based on high order cladding mode. IEEE Sens. J. 11, 1423–1426 (2011)CrossRef Y.H. Kim et al., Ultra-sensitive fiber-optic hydrogen sensor based on high order cladding mode. IEEE Sens. J. 11, 1423–1426 (2011)CrossRef
91.
go back to reference C. Sun, P.R. Ohodnicki, Y. Yu, Double-layer zeolite nano-blocks and palladium-based nanocomposite fiber optic sensors for selective hydrogen sensing at room temperature. IEEE Sens. Lett. 1, 1500504:1–4 (2017)CrossRef C. Sun, P.R. Ohodnicki, Y. Yu, Double-layer zeolite nano-blocks and palladium-based nanocomposite fiber optic sensors for selective hydrogen sensing at room temperature. IEEE Sens. Lett. 1, 1500504:1–4 (2017)CrossRef
92.
go back to reference Y. Wang et al., Fiber optic hydrogen sensor based on fabry–perot interferometer coated with sol-gel Pt/WO3 coating. J. Lightwave Technol. 33, 2530–2534 (2015)CrossRef Y. Wang et al., Fiber optic hydrogen sensor based on fabry–perot interferometer coated with sol-gel Pt/WO3 coating. J. Lightwave Technol. 33, 2530–2534 (2015)CrossRef
93.
go back to reference Z. Yu et al., Microfiber Bragg grating hydrogen sensors. IEEE Photon. Technol. Lett. 27, 2575–2578 (2015)CrossRef Z. Yu et al., Microfiber Bragg grating hydrogen sensors. IEEE Photon. Technol. Lett. 27, 2575–2578 (2015)CrossRef
94.
go back to reference J. Dai, M. Yang, X. Yu, H. Lu, Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film. Opt. Fiber Technol. 19, 26–30 (2013)CrossRef J. Dai, M. Yang, X. Yu, H. Lu, Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film. Opt. Fiber Technol. 19, 26–30 (2013)CrossRef
95.
go back to reference Y. Zhang et al., Hydrogen sensor based on high-birefringence fiber loop mirror with sol-gel Pd/WO3 coating. Sens. Actuators B 248, 71–76 (2017)CrossRef Y. Zhang et al., Hydrogen sensor based on high-birefringence fiber loop mirror with sol-gel Pd/WO3 coating. Sens. Actuators B 248, 71–76 (2017)CrossRef
96.
go back to reference Y. Li et al., Optical hydrogen sensor based on PDMS-formed double-C type cavities with embedded Pt-loaded WO3/SiO2. Sens. Actuators B 276, 23–30 (2018)CrossRef Y. Li et al., Optical hydrogen sensor based on PDMS-formed double-C type cavities with embedded Pt-loaded WO3/SiO2. Sens. Actuators B 276, 23–30 (2018)CrossRef
97.
go back to reference J. Dai et al., Improved performance of fiber optic hydrogen sensor based onWO3-Pd2Pt-Pt composite film and self-referenced demodulation method. Sens. Actuators B 249, 210–216 (2017)CrossRef J. Dai et al., Improved performance of fiber optic hydrogen sensor based onWO3-Pd2Pt-Pt composite film and self-referenced demodulation method. Sens. Actuators B 249, 210–216 (2017)CrossRef
98.
go back to reference F. Zhou et al., An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer. IEEE Sens. J. 14, 1133–1136 (2014)CrossRef F. Zhou et al., An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer. IEEE Sens. J. 14, 1133–1136 (2014)CrossRef
99.
go back to reference C.L. Jun, C.Y. Ping, Z. Gang, An optical fiber hydrogen sensor with Pd/Ag film. Opt. Lett. 5, 0220–0223 (2009)CrossRef C.L. Jun, C.Y. Ping, Z. Gang, An optical fiber hydrogen sensor with Pd/Ag film. Opt. Lett. 5, 0220–0223 (2009)CrossRef
100.
go back to reference C.L. Jun, S.H. Chao, Z. Gang, Z.Z. Xiang, Z. Jun, Optical fiber hydrogen sensor based on light reflection and a palladium-sliver thin film. Opt. Lett. 7, 0250–0252 (2011) C.L. Jun, S.H. Chao, Z. Gang, Z.Z. Xiang, Z. Jun, Optical fiber hydrogen sensor based on light reflection and a palladium-sliver thin film. Opt. Lett. 7, 0250–0252 (2011)
Metadata
Title
Hydrogen sensors: palladium-based electrode
Authors
Ghobad Behzadi Pour
Leila Fekri Aval
Mehdi Nasiri Sarvi
Sedigheh Fekri Aval
Hamed Nazarpour Fard
Publication date
28-03-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01190-7

Other articles of this Issue 9/2019

Journal of Materials Science: Materials in Electronics 9/2019 Go to the issue