Skip to main content
Top

2023 | OriginalPaper | Chapter

7. II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes II-VI semiconductor films that have been applied to sensing various gases and vapors. Their gas responses have been stimulated by heat or light, and their readouts are enabled by transducing elements that usually comprise resistive principles. Previous studies on gas-sensitive II-VI semiconductors have consistently shown that these materials must meet similar requirements to other gas-sensitive materials, such as metal oxides. These requirements include small grain size, high porosity, optimal charge carrier concentration, and high chemical surface activity. Hence, part of the research on II-VI semiconductors as gas-sensitive elements involves exploring methods and routes that allow tailoring the semiconductor’s morphology, structure, chemical, and electronic properties. Among various available synthetic routes for II-VI semiconductors, chemical bath, precipitation, or hydrothermal processes are the most popular methods, usually assisted by other secondary deposition methods to integrate the synthesized materials over the appropriate gas sensing transducing platforms. The integrated II-VI semiconducting compounds are generally in the form of thin or thick layers containing spherical-like particles or other low-dimensional or hierarchical structures in the form of flakes or dendrites. These low-dimensional or hierarchical structures typically report superior gas responses than traditional spherical-like particles. Here we discuss in detail the fabrication processes, synthetic routes, and gas sensing properties of II-VI semiconducting films. The discussion addresses the most common factors influencing II-VI semiconductors’ gas sensing properties, their possible gas sensing mechanism(s), and the metrics of their functionality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hontañón E, Vallejos S. One-dimensional metal oxide nanostructures for chemical sensors. In: Nanostructured materials - classification, growth, simulation, characterization, and devices, IntechOpen; 2021. Hontañón E, Vallejos S. One-dimensional metal oxide nanostructures for chemical sensors. In: Nanostructured materials - classification, growth, simulation, characterization, and devices, IntechOpen; 2021.
2.
go back to reference Šetka M, Claros M, Chmela O, Vallejos S. Photoactivated materials and sensors for NO2 monitoring. J Mater Chem C. 2021;9(47):16804–27. Šetka M, Claros M, Chmela O, Vallejos S. Photoactivated materials and sensors for NO2 monitoring. J Mater Chem C. 2021;9(47):16804–27.
3.
go back to reference Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuator B. 2018;255:2963–70.CrossRef Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuator B. 2018;255:2963–70.CrossRef
4.
go back to reference Chakraborty S, Pal M. Improved ethanol sensing behaviour of cadmium sulphide nanoflakes: beneficial effect of morphology. Sensors Actuators B Chem. 2017;242:1155–64.ADSCrossRef Chakraborty S, Pal M. Improved ethanol sensing behaviour of cadmium sulphide nanoflakes: beneficial effect of morphology. Sensors Actuators B Chem. 2017;242:1155–64.ADSCrossRef
5.
go back to reference Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, et al. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors. 2016;16(3):296.ADSCrossRef Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, et al. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors. 2016;16(3):296.ADSCrossRef
6.
go back to reference Long G, Guo Y, Li W, Tang Q, Zu X, Ma J, et al. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron Eng. 2020;222:111201.CrossRef Long G, Guo Y, Li W, Tang Q, Zu X, Ma J, et al. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron Eng. 2020;222:111201.CrossRef
7.
go back to reference Shinde MS, Swapna Samanta S, Sonawane MS, Ahirrao PB, Patil RS. Gas sensing properties of nanostructured ZnS thin films. J Nano Adv Mater. 2015;3(2):99. Shinde MS, Swapna Samanta S, Sonawane MS, Ahirrao PB, Patil RS. Gas sensing properties of nanostructured ZnS thin films. J Nano Adv Mater. 2015;3(2):99.
8.
go back to reference Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, et al. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.CrossRef Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, et al. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.CrossRef
9.
go back to reference Navale ST, Mane AT, Chougule MA, Shinde NM, Kim J, Patil VB. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 2014;4(84):44547–54.ADSCrossRef Navale ST, Mane AT, Chougule MA, Shinde NM, Kim J, Patil VB. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 2014;4(84):44547–54.ADSCrossRef
10.
go back to reference Nemade KR, Waghuley SA. Ultra-violet C absorption and LPG sensing study of zinc sulphide nanoparticles deposited by a flame-assisted spray pyrolysis method. J Taibah Univ Sci. 2016;10(3):437–41.CrossRef Nemade KR, Waghuley SA. Ultra-violet C absorption and LPG sensing study of zinc sulphide nanoparticles deposited by a flame-assisted spray pyrolysis method. J Taibah Univ Sci. 2016;10(3):437–41.CrossRef
11.
go back to reference Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, et al. Arrays of ultrathin CdS Nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2016;9(1):602–9.CrossRef Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, et al. Arrays of ultrathin CdS Nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2016;9(1):602–9.CrossRef
12.
go back to reference Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.ADSCrossRef Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.ADSCrossRef
13.
go back to reference Dzhurkov V, Levi Z, Nesheva D, Hristova-Vasileva T. Room temperature sensitivity of ZnSe nanolayers to ethanol vapours. J Phys Conf Ser. 2019;1186(1):012023.CrossRef Dzhurkov V, Levi Z, Nesheva D, Hristova-Vasileva T. Room temperature sensitivity of ZnSe nanolayers to ethanol vapours. J Phys Conf Ser. 2019;1186(1):012023.CrossRef
14.
go back to reference Al-Hilli BA. The effect of cadmium selenide thin film thickness on carbon monoxide gas sensing properties prepared by plasma DC-sputtering technique. Iraqi J Sci. 2018;59:2234–41. Al-Hilli BA. The effect of cadmium selenide thin film thickness on carbon monoxide gas sensing properties prepared by plasma DC-sputtering technique. Iraqi J Sci. 2018;59:2234–41.
15.
go back to reference Fabbri B, Gaiardo A, Guidi V, Malagù C, Giberti A. Photo-activation of cadmium sulfide films for gas sensing. Procedia Eng. 2014;87:140–3.CrossRef Fabbri B, Gaiardo A, Guidi V, Malagù C, Giberti A. Photo-activation of cadmium sulfide films for gas sensing. Procedia Eng. 2014;87:140–3.CrossRef
16.
go back to reference Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.CrossRef Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.CrossRef
17.
go back to reference Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. J Nanosci Nanotechnol. 2016;16(3):3026–9.CrossRef Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. J Nanosci Nanotechnol. 2016;16(3):3026–9.CrossRef
18.
go back to reference Hu P, Gong G, Zhan F, Zhang Y, Li R, Cao Y. The hydrothermal evolution of the phase and shape of ZnS nanostructures and their gas-sensing properties. Dalton Trans. 2016;45(6):2409–16.CrossRef Hu P, Gong G, Zhan F, Zhang Y, Li R, Cao Y. The hydrothermal evolution of the phase and shape of ZnS nanostructures and their gas-sensing properties. Dalton Trans. 2016;45(6):2409–16.CrossRef
19.
go back to reference Zhang N, Ma X, Han J, Ruan S, Chen Y, Zhang H, et al. Synthesis of sea urchin-like microsphere of CdS and its gas sensing properties. Mater Sci Eng B. 2019;243:206–13.CrossRef Zhang N, Ma X, Han J, Ruan S, Chen Y, Zhang H, et al. Synthesis of sea urchin-like microsphere of CdS and its gas sensing properties. Mater Sci Eng B. 2019;243:206–13.CrossRef
20.
go back to reference Guo W, Ma J, Pang G, Wei C, Zheng W. Synergistic effect of the reducing ability and hydrogen bonds of tested gases: highly orientational CdS dendrite sensors. J Mater Chem A. 2013;2(4):1032–8.CrossRef Guo W, Ma J, Pang G, Wei C, Zheng W. Synergistic effect of the reducing ability and hydrogen bonds of tested gases: highly orientational CdS dendrite sensors. J Mater Chem A. 2013;2(4):1032–8.CrossRef
21.
go back to reference Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.CrossRef Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.CrossRef
22.
go back to reference Sonker RK, Yadav BC, Gupta V, Tomar M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater Chem Phys. 2020;239:121975.CrossRef Sonker RK, Yadav BC, Gupta V, Tomar M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater Chem Phys. 2020;239:121975.CrossRef
23.
go back to reference Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B. 2007;139(1):1–23.CrossRef Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B. 2007;139(1):1–23.CrossRef
24.
go back to reference Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22(26):1433.ADSCrossRef Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22(26):1433.ADSCrossRef
25.
go back to reference Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B. 2015;207(PartA):504–10.CrossRef Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B. 2015;207(PartA):504–10.CrossRef
26.
go back to reference Zhang L, Wang H, Guo W, Ma J. Sensitive NO sensor based CdS microparticles assembled by nanoparticles. RSC Adv. 2016;6(51):45386–91.ADSCrossRef Zhang L, Wang H, Guo W, Ma J. Sensitive NO sensor based CdS microparticles assembled by nanoparticles. RSC Adv. 2016;6(51):45386–91.ADSCrossRef
27.
go back to reference Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuator B. 1991;5(1–4):7–19.CrossRef Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuator B. 1991;5(1–4):7–19.CrossRef
28.
go back to reference Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3(1):154–65.ADSCrossRef Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3(1):154–65.ADSCrossRef
29.
go back to reference Smyntyna VA, Gerasutenko V, Kashulis S, Mattogno G, Reghini S. The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sens Actuators B. 1994;19(1–3):464–5.CrossRef Smyntyna VA, Gerasutenko V, Kashulis S, Mattogno G, Reghini S. The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sens Actuators B. 1994;19(1–3):464–5.CrossRef
30.
go back to reference Smyntyna V, Gerasutenko V, Golovanov V, Kačiulis S, Mattogno G, Viticoli S. Surface spectroscopy study of CdSe and CdS thin-film oxygen sensors. Sens Actuators B. 1994;22(3):189–94.CrossRef Smyntyna V, Gerasutenko V, Golovanov V, Kačiulis S, Mattogno G, Viticoli S. Surface spectroscopy study of CdSe and CdS thin-film oxygen sensors. Sens Actuators B. 1994;22(3):189–94.CrossRef
31.
go back to reference Yamazoe N, Sakai G, Shimanoe K. Oxide Semiconductor Gas Sensors. Catal Surv from Asia. 2003;7(1):63–75.CrossRef Yamazoe N, Sakai G, Shimanoe K. Oxide Semiconductor Gas Sensors. Catal Surv from Asia. 2003;7(1):63–75.CrossRef
32.
go back to reference Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B. 2014;204. Elsevier:250–72.CrossRef Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B. 2014;204. Elsevier:250–72.CrossRef
33.
go back to reference Degler D, Weimar U, Barsan N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors. 2019;4(9):2228–49.CrossRef Degler D, Weimar U, Barsan N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors. 2019;4(9):2228–49.CrossRef
34.
go back to reference Li Z, Yao ZJ, Haidry AA, Plecenik T, Xie LJ, Sun LC, et al. Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy. 2018;43(45):21114–32.CrossRef Li Z, Yao ZJ, Haidry AA, Plecenik T, Xie LJ, Sun LC, et al. Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy. 2018;43(45):21114–32.CrossRef
35.
go back to reference Huang Z, Wei D, Wang T, Jiang W, Liu F, Chuai X, et al. Excellent gas sensing of hierarchical urchin-shaped Zn doped cadmium sulfide. J Alloys Compd. 2019;773:299–304.CrossRef Huang Z, Wei D, Wang T, Jiang W, Liu F, Chuai X, et al. Excellent gas sensing of hierarchical urchin-shaped Zn doped cadmium sulfide. J Alloys Compd. 2019;773:299–304.CrossRef
36.
go back to reference Kim HJ, Il Choi K, Kim KM, Na CW, Lee JH. Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B. 2012;171–172:1029–37.CrossRef Kim HJ, Il Choi K, Kim KM, Na CW, Lee JH. Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B. 2012;171–172:1029–37.CrossRef
38.
go back to reference Zhong F, Wu Z, Guo J, Jia D. Ni-doped ZnS nanospheres decorated with Au nanoparticles for highly improved gas sensor performance. Sensors. 2018;18(9):2882.ADSCrossRef Zhong F, Wu Z, Guo J, Jia D. Ni-doped ZnS nanospheres decorated with Au nanoparticles for highly improved gas sensor performance. Sensors. 2018;18(9):2882.ADSCrossRef
39.
go back to reference Lin F, Lai Z, Zhang L, Huang Y, Li F, Chen P, et al. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchim Acta. 2020;187(1):1–9.CrossRef Lin F, Lai Z, Zhang L, Huang Y, Li F, Chen P, et al. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchim Acta. 2020;187(1):1–9.CrossRef
40.
go back to reference Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of au-functionalized ZnS nanowires. Sens Actuators B. 2013;188:1270–6.CrossRef Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of au-functionalized ZnS nanowires. Sens Actuators B. 2013;188:1270–6.CrossRef
41.
go back to reference Park S, An S, Mun Y, Lee C. UV-activated gas sensing properties of ZnS nanorods functionalized with Pd. Curr Appl Phys. 2014;14(SUPPL. 1):S57–62.ADSCrossRef Park S, An S, Mun Y, Lee C. UV-activated gas sensing properties of ZnS nanorods functionalized with Pd. Curr Appl Phys. 2014;14(SUPPL. 1):S57–62.ADSCrossRef
42.
go back to reference Prokopenko SL, Gunya GM, Makhno SM, Gorbyk PP. Room-temperature gas sensor based on semiconductor nanoscale heterostructures ZnS/CdS. Him Fiz ta Tehnol Poverhni. 2017;8(4):432–8.CrossRef Prokopenko SL, Gunya GM, Makhno SM, Gorbyk PP. Room-temperature gas sensor based on semiconductor nanoscale heterostructures ZnS/CdS. Him Fiz ta Tehnol Poverhni. 2017;8(4):432–8.CrossRef
43.
go back to reference Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.ADSCrossRef Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.ADSCrossRef
44.
go back to reference Ding P, Xu D, Dong N, Chen Y, Xu P, Zheng D, et al. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chem Lett. 2020;31(8):2050–4.CrossRef Ding P, Xu D, Dong N, Chen Y, Xu P, Zheng D, et al. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chem Lett. 2020;31(8):2050–4.CrossRef
45.
go back to reference Hieu NM, Van Lam D, Hien TT, Chinh ND, Quang ND, Hung NM, et al. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des. 2020;191:108628.CrossRef Hieu NM, Van Lam D, Hien TT, Chinh ND, Quang ND, Hung NM, et al. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des. 2020;191:108628.CrossRef
46.
go back to reference Zhang H, Jin Z, Da Xu M, Zhang Y, Huang J, Cheng H, et al. Enhanced isopropanol sensing performance of the CdS nanoparticle decorated ZnO porous nanosheets-based gas sensors. IEEE Sensors J. 2021;21(12):13041–7.ADSCrossRef Zhang H, Jin Z, Da Xu M, Zhang Y, Huang J, Cheng H, et al. Enhanced isopropanol sensing performance of the CdS nanoparticle decorated ZnO porous nanosheets-based gas sensors. IEEE Sensors J. 2021;21(12):13041–7.ADSCrossRef
47.
go back to reference Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.CrossRef Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.CrossRef
48.
go back to reference Tsai YS, Chou TW, Xu CY, Chang Huang W, Lin CF, Wu YCS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.CrossRef Tsai YS, Chou TW, Xu CY, Chang Huang W, Lin CF, Wu YCS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.CrossRef
49.
go back to reference Arunraja L, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V. Investigation and characterization of ZnO/CdS nanocomposites using chemical precipitation method for gas sensing applications. J Mater Sci Mater Electron. 2017;28(23):18113–20.CrossRef Arunraja L, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V. Investigation and characterization of ZnO/CdS nanocomposites using chemical precipitation method for gas sensing applications. J Mater Sci Mater Electron. 2017;28(23):18113–20.CrossRef
50.
go back to reference Šetka M, Bahos FA, Chmela O, Matatagui D, Gràcia I, Drbohlavová J, et al. Cadmium telluride/polypyrrole nanocomposite based love wave sensors highly sensitive to acetone at room temperature. Sens Actuators B. 2020;321:128573.CrossRef Šetka M, Bahos FA, Chmela O, Matatagui D, Gràcia I, Drbohlavová J, et al. Cadmium telluride/polypyrrole nanocomposite based love wave sensors highly sensitive to acetone at room temperature. Sens Actuators B. 2020;321:128573.CrossRef
51.
go back to reference Kim D, Park KM, Shanmugam R, Yoo B. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application. J Nanosci Nanotechnol. 2014;14(11):8248–52.CrossRef Kim D, Park KM, Shanmugam R, Yoo B. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application. J Nanosci Nanotechnol. 2014;14(11):8248–52.CrossRef
52.
go back to reference Qin N, Xiang Q, Zhao H, Zhang J, Xu J. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm. 2014;16(30):7062–73.CrossRef Qin N, Xiang Q, Zhao H, Zhang J, Xu J. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm. 2014;16(30):7062–73.CrossRef
53.
go back to reference Patel NG, Panchal CJ, Makhija KK. Use of cadmium selenide thin films as a carbon dioxide gas sensor. Cryst Res Technol. 1994;29(7):1013–20.CrossRef Patel NG, Panchal CJ, Makhija KK. Use of cadmium selenide thin films as a carbon dioxide gas sensor. Cryst Res Technol. 1994;29(7):1013–20.CrossRef
54.
go back to reference Maserati L, Moreels I, Prato M, Krahne R, Manna L, Zhang Y. Oxygen sensitivity of atomically passivated CdS nanocrystal films. ACS Appl Mater Interfaces. 2014;6(12):9517–23.CrossRef Maserati L, Moreels I, Prato M, Krahne R, Manna L, Zhang Y. Oxygen sensitivity of atomically passivated CdS nanocrystal films. ACS Appl Mater Interfaces. 2014;6(12):9517–23.CrossRef
55.
go back to reference Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro -and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5. Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro -and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5.
56.
go back to reference Laatar F, Harizi A, Zarroug A, Ghrib M, Hassen M, Gaidi M, et al. Novel CdSe nanorods/porous anodic alumina nanocomposite-based ethanol sensor: sensitivity enhancement by visible light illumination. J Mater Sci Mater Electron. 2017;28(16):12259–67.CrossRef Laatar F, Harizi A, Zarroug A, Ghrib M, Hassen M, Gaidi M, et al. Novel CdSe nanorods/porous anodic alumina nanocomposite-based ethanol sensor: sensitivity enhancement by visible light illumination. J Mater Sci Mater Electron. 2017;28(16):12259–67.CrossRef
57.
go back to reference Podgornyi SO, Demeshko IP, Podgornaya OT, Lukoyanova OV, Skutin ED, Fedotova KI. Cadmium telluride nanofilms application in carbon monoxide detection. In: Proceedings of Dyn Syst Mech Mach Dyn, 15–17 November 2016, Omsk, p. 16602519. Podgornyi SO, Demeshko IP, Podgornaya OT, Lukoyanova OV, Skutin ED, Fedotova KI. Cadmium telluride nanofilms application in carbon monoxide detection. In: Proceedings of Dyn Syst Mech Mach Dyn, 15–17 November 2016, Omsk, p. 16602519.
58.
go back to reference Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.ADSCrossRef Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.ADSCrossRef
59.
go back to reference Bube RH. Surface photoconductivity in cadmium sulfide crystals. J Chem Phys. 2004;21(8):1409.ADSCrossRef Bube RH. Surface photoconductivity in cadmium sulfide crystals. J Chem Phys. 2004;21(8):1409.ADSCrossRef
60.
go back to reference Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1998;68(10):3898.ADSCrossRef Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1998;68(10):3898.ADSCrossRef
61.
go back to reference Park S, Kim S, Ko H, Lee C. Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature. J Electroceram. 2014;33(1–2):75–81.CrossRef Park S, Kim S, Ko H, Lee C. Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature. J Electroceram. 2014;33(1–2):75–81.CrossRef
62.
go back to reference Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X, et al. CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater. 2014;2(8):738–45. Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X, et al. CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater. 2014;2(8):738–45.
63.
go back to reference Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens Actuators B. 2014;205:305–12.CrossRef Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens Actuators B. 2014;205:305–12.CrossRef
64.
go back to reference Geng X, Zhang C, Debliquy M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram Int. 2016;42(4):4845–52.CrossRef Geng X, Zhang C, Debliquy M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram Int. 2016;42(4):4845–52.CrossRef
65.
go back to reference Park S, Kim S, Ko H, Lee C. Light assisted room temperature ethanol gas sensing of ZnO-ZnS nanowires. J Nanosci Nanotechnol. 2014;14(12):9025–8.CrossRef Park S, Kim S, Ko H, Lee C. Light assisted room temperature ethanol gas sensing of ZnO-ZnS nanowires. J Nanosci Nanotechnol. 2014;14(12):9025–8.CrossRef
66.
go back to reference Wu B, Lin Z, Sheng M, Hou S, Xu J. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Appl Surf Sci. 2016;360:652–7.ADSCrossRef Wu B, Lin Z, Sheng M, Hou S, Xu J. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Appl Surf Sci. 2016;360:652–7.ADSCrossRef
67.
go back to reference Dengo N, De Fazio AF, Weiss M, Marschall R, Dolcet P, Fanetti M, et al. Thermal evolution of ZnS nanostructures: effect of oxidation phenomena on structural features and photocatalytical performances. Inorg Chem. 2018;57(21):13104–14.CrossRef Dengo N, De Fazio AF, Weiss M, Marschall R, Dolcet P, Fanetti M, et al. Thermal evolution of ZnS nanostructures: effect of oxidation phenomena on structural features and photocatalytical performances. Inorg Chem. 2018;57(21):13104–14.CrossRef
68.
go back to reference Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798. Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798.
69.
go back to reference Schultze D, Steinike U, Kussin J, Kretzschmar U. Thermal oxidation of ZnS modifications sphalerite and wurtzite. Cryst Res Technol. 1995;30(4):553–8.CrossRef Schultze D, Steinike U, Kussin J, Kretzschmar U. Thermal oxidation of ZnS modifications sphalerite and wurtzite. Cryst Res Technol. 1995;30(4):553–8.CrossRef
70.
go back to reference Murugadoss G. Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J Lumin. 2011;131(10):2216–23.CrossRef Murugadoss G. Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J Lumin. 2011;131(10):2216–23.CrossRef
71.
go back to reference Trenczek-Zajac A. Thermally oxidized CdS as a photoactive material. New J Chem. 2019;43(23):8892–902.CrossRef Trenczek-Zajac A. Thermally oxidized CdS as a photoactive material. New J Chem. 2019;43(23):8892–902.CrossRef
72.
go back to reference Eom NSA, Kim TS, Choa YH, Kim WB, Kim BS. Surface oxidation behaviors of Cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14(10):8024–7.CrossRef Eom NSA, Kim TS, Choa YH, Kim WB, Kim BS. Surface oxidation behaviors of Cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14(10):8024–7.CrossRef
Metadata
Title
II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors
Authors
Stella Vallejos
Chris Blackman
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_7

Premium Partners