Skip to main content

2023 | OriginalPaper | Buchkapitel

7. II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors

verfasst von : Stella Vallejos, Chris Blackman

Erschienen in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes II-VI semiconductor films that have been applied to sensing various gases and vapors. Their gas responses have been stimulated by heat or light, and their readouts are enabled by transducing elements that usually comprise resistive principles. Previous studies on gas-sensitive II-VI semiconductors have consistently shown that these materials must meet similar requirements to other gas-sensitive materials, such as metal oxides. These requirements include small grain size, high porosity, optimal charge carrier concentration, and high chemical surface activity. Hence, part of the research on II-VI semiconductors as gas-sensitive elements involves exploring methods and routes that allow tailoring the semiconductor’s morphology, structure, chemical, and electronic properties. Among various available synthetic routes for II-VI semiconductors, chemical bath, precipitation, or hydrothermal processes are the most popular methods, usually assisted by other secondary deposition methods to integrate the synthesized materials over the appropriate gas sensing transducing platforms. The integrated II-VI semiconducting compounds are generally in the form of thin or thick layers containing spherical-like particles or other low-dimensional or hierarchical structures in the form of flakes or dendrites. These low-dimensional or hierarchical structures typically report superior gas responses than traditional spherical-like particles. Here we discuss in detail the fabrication processes, synthetic routes, and gas sensing properties of II-VI semiconducting films. The discussion addresses the most common factors influencing II-VI semiconductors’ gas sensing properties, their possible gas sensing mechanism(s), and the metrics of their functionality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hontañón E, Vallejos S. One-dimensional metal oxide nanostructures for chemical sensors. In: Nanostructured materials - classification, growth, simulation, characterization, and devices, IntechOpen; 2021. Hontañón E, Vallejos S. One-dimensional metal oxide nanostructures for chemical sensors. In: Nanostructured materials - classification, growth, simulation, characterization, and devices, IntechOpen; 2021.
2.
Zurück zum Zitat Šetka M, Claros M, Chmela O, Vallejos S. Photoactivated materials and sensors for NO2 monitoring. J Mater Chem C. 2021;9(47):16804–27. Šetka M, Claros M, Chmela O, Vallejos S. Photoactivated materials and sensors for NO2 monitoring. J Mater Chem C. 2021;9(47):16804–27.
3.
Zurück zum Zitat Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuator B. 2018;255:2963–70.CrossRef Li HY, Yoon JW, Lee CS, Lim K, Yoon JW, Lee JH. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuator B. 2018;255:2963–70.CrossRef
4.
Zurück zum Zitat Chakraborty S, Pal M. Improved ethanol sensing behaviour of cadmium sulphide nanoflakes: beneficial effect of morphology. Sensors Actuators B Chem. 2017;242:1155–64.ADSCrossRef Chakraborty S, Pal M. Improved ethanol sensing behaviour of cadmium sulphide nanoflakes: beneficial effect of morphology. Sensors Actuators B Chem. 2017;242:1155–64.ADSCrossRef
5.
Zurück zum Zitat Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, et al. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors. 2016;16(3):296.ADSCrossRef Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, et al. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors. 2016;16(3):296.ADSCrossRef
6.
Zurück zum Zitat Long G, Guo Y, Li W, Tang Q, Zu X, Ma J, et al. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron Eng. 2020;222:111201.CrossRef Long G, Guo Y, Li W, Tang Q, Zu X, Ma J, et al. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron Eng. 2020;222:111201.CrossRef
7.
Zurück zum Zitat Shinde MS, Swapna Samanta S, Sonawane MS, Ahirrao PB, Patil RS. Gas sensing properties of nanostructured ZnS thin films. J Nano Adv Mater. 2015;3(2):99. Shinde MS, Swapna Samanta S, Sonawane MS, Ahirrao PB, Patil RS. Gas sensing properties of nanostructured ZnS thin films. J Nano Adv Mater. 2015;3(2):99.
8.
Zurück zum Zitat Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, et al. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.CrossRef Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, et al. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.CrossRef
9.
Zurück zum Zitat Navale ST, Mane AT, Chougule MA, Shinde NM, Kim J, Patil VB. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 2014;4(84):44547–54.ADSCrossRef Navale ST, Mane AT, Chougule MA, Shinde NM, Kim J, Patil VB. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 2014;4(84):44547–54.ADSCrossRef
10.
Zurück zum Zitat Nemade KR, Waghuley SA. Ultra-violet C absorption and LPG sensing study of zinc sulphide nanoparticles deposited by a flame-assisted spray pyrolysis method. J Taibah Univ Sci. 2016;10(3):437–41.CrossRef Nemade KR, Waghuley SA. Ultra-violet C absorption and LPG sensing study of zinc sulphide nanoparticles deposited by a flame-assisted spray pyrolysis method. J Taibah Univ Sci. 2016;10(3):437–41.CrossRef
11.
Zurück zum Zitat Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, et al. Arrays of ultrathin CdS Nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2016;9(1):602–9.CrossRef Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, et al. Arrays of ultrathin CdS Nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2016;9(1):602–9.CrossRef
12.
Zurück zum Zitat Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.ADSCrossRef Saxena N, Kumar P, Gupta V. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Adv. 2019;1(6):2382–91.ADSCrossRef
13.
Zurück zum Zitat Dzhurkov V, Levi Z, Nesheva D, Hristova-Vasileva T. Room temperature sensitivity of ZnSe nanolayers to ethanol vapours. J Phys Conf Ser. 2019;1186(1):012023.CrossRef Dzhurkov V, Levi Z, Nesheva D, Hristova-Vasileva T. Room temperature sensitivity of ZnSe nanolayers to ethanol vapours. J Phys Conf Ser. 2019;1186(1):012023.CrossRef
14.
Zurück zum Zitat Al-Hilli BA. The effect of cadmium selenide thin film thickness on carbon monoxide gas sensing properties prepared by plasma DC-sputtering technique. Iraqi J Sci. 2018;59:2234–41. Al-Hilli BA. The effect of cadmium selenide thin film thickness on carbon monoxide gas sensing properties prepared by plasma DC-sputtering technique. Iraqi J Sci. 2018;59:2234–41.
15.
Zurück zum Zitat Fabbri B, Gaiardo A, Guidi V, Malagù C, Giberti A. Photo-activation of cadmium sulfide films for gas sensing. Procedia Eng. 2014;87:140–3.CrossRef Fabbri B, Gaiardo A, Guidi V, Malagù C, Giberti A. Photo-activation of cadmium sulfide films for gas sensing. Procedia Eng. 2014;87:140–3.CrossRef
16.
Zurück zum Zitat Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.CrossRef Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.CrossRef
17.
Zurück zum Zitat Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. J Nanosci Nanotechnol. 2016;16(3):3026–9.CrossRef Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. J Nanosci Nanotechnol. 2016;16(3):3026–9.CrossRef
18.
Zurück zum Zitat Hu P, Gong G, Zhan F, Zhang Y, Li R, Cao Y. The hydrothermal evolution of the phase and shape of ZnS nanostructures and their gas-sensing properties. Dalton Trans. 2016;45(6):2409–16.CrossRef Hu P, Gong G, Zhan F, Zhang Y, Li R, Cao Y. The hydrothermal evolution of the phase and shape of ZnS nanostructures and their gas-sensing properties. Dalton Trans. 2016;45(6):2409–16.CrossRef
19.
Zurück zum Zitat Zhang N, Ma X, Han J, Ruan S, Chen Y, Zhang H, et al. Synthesis of sea urchin-like microsphere of CdS and its gas sensing properties. Mater Sci Eng B. 2019;243:206–13.CrossRef Zhang N, Ma X, Han J, Ruan S, Chen Y, Zhang H, et al. Synthesis of sea urchin-like microsphere of CdS and its gas sensing properties. Mater Sci Eng B. 2019;243:206–13.CrossRef
20.
Zurück zum Zitat Guo W, Ma J, Pang G, Wei C, Zheng W. Synergistic effect of the reducing ability and hydrogen bonds of tested gases: highly orientational CdS dendrite sensors. J Mater Chem A. 2013;2(4):1032–8.CrossRef Guo W, Ma J, Pang G, Wei C, Zheng W. Synergistic effect of the reducing ability and hydrogen bonds of tested gases: highly orientational CdS dendrite sensors. J Mater Chem A. 2013;2(4):1032–8.CrossRef
21.
Zurück zum Zitat Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.CrossRef Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.CrossRef
22.
Zurück zum Zitat Sonker RK, Yadav BC, Gupta V, Tomar M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater Chem Phys. 2020;239:121975.CrossRef Sonker RK, Yadav BC, Gupta V, Tomar M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater Chem Phys. 2020;239:121975.CrossRef
23.
Zurück zum Zitat Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B. 2007;139(1):1–23.CrossRef Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B. 2007;139(1):1–23.CrossRef
24.
Zurück zum Zitat Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22(26):1433.ADSCrossRef Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22(26):1433.ADSCrossRef
25.
Zurück zum Zitat Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B. 2015;207(PartA):504–10.CrossRef Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B. 2015;207(PartA):504–10.CrossRef
26.
Zurück zum Zitat Zhang L, Wang H, Guo W, Ma J. Sensitive NO sensor based CdS microparticles assembled by nanoparticles. RSC Adv. 2016;6(51):45386–91.ADSCrossRef Zhang L, Wang H, Guo W, Ma J. Sensitive NO sensor based CdS microparticles assembled by nanoparticles. RSC Adv. 2016;6(51):45386–91.ADSCrossRef
27.
Zurück zum Zitat Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuator B. 1991;5(1–4):7–19.CrossRef Yamazoe N. New approaches for improving semiconductor gas sensors. Sens Actuator B. 1991;5(1–4):7–19.CrossRef
28.
Zurück zum Zitat Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3(1):154–65.ADSCrossRef Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3(1):154–65.ADSCrossRef
29.
Zurück zum Zitat Smyntyna VA, Gerasutenko V, Kashulis S, Mattogno G, Reghini S. The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sens Actuators B. 1994;19(1–3):464–5.CrossRef Smyntyna VA, Gerasutenko V, Kashulis S, Mattogno G, Reghini S. The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sens Actuators B. 1994;19(1–3):464–5.CrossRef
30.
Zurück zum Zitat Smyntyna V, Gerasutenko V, Golovanov V, Kačiulis S, Mattogno G, Viticoli S. Surface spectroscopy study of CdSe and CdS thin-film oxygen sensors. Sens Actuators B. 1994;22(3):189–94.CrossRef Smyntyna V, Gerasutenko V, Golovanov V, Kačiulis S, Mattogno G, Viticoli S. Surface spectroscopy study of CdSe and CdS thin-film oxygen sensors. Sens Actuators B. 1994;22(3):189–94.CrossRef
31.
Zurück zum Zitat Yamazoe N, Sakai G, Shimanoe K. Oxide Semiconductor Gas Sensors. Catal Surv from Asia. 2003;7(1):63–75.CrossRef Yamazoe N, Sakai G, Shimanoe K. Oxide Semiconductor Gas Sensors. Catal Surv from Asia. 2003;7(1):63–75.CrossRef
32.
Zurück zum Zitat Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B. 2014;204. Elsevier:250–72.CrossRef Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B. 2014;204. Elsevier:250–72.CrossRef
33.
Zurück zum Zitat Degler D, Weimar U, Barsan N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors. 2019;4(9):2228–49.CrossRef Degler D, Weimar U, Barsan N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sensors. 2019;4(9):2228–49.CrossRef
34.
Zurück zum Zitat Li Z, Yao ZJ, Haidry AA, Plecenik T, Xie LJ, Sun LC, et al. Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy. 2018;43(45):21114–32.CrossRef Li Z, Yao ZJ, Haidry AA, Plecenik T, Xie LJ, Sun LC, et al. Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy. 2018;43(45):21114–32.CrossRef
35.
Zurück zum Zitat Huang Z, Wei D, Wang T, Jiang W, Liu F, Chuai X, et al. Excellent gas sensing of hierarchical urchin-shaped Zn doped cadmium sulfide. J Alloys Compd. 2019;773:299–304.CrossRef Huang Z, Wei D, Wang T, Jiang W, Liu F, Chuai X, et al. Excellent gas sensing of hierarchical urchin-shaped Zn doped cadmium sulfide. J Alloys Compd. 2019;773:299–304.CrossRef
36.
Zurück zum Zitat Kim HJ, Il Choi K, Kim KM, Na CW, Lee JH. Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B. 2012;171–172:1029–37.CrossRef Kim HJ, Il Choi K, Kim KM, Na CW, Lee JH. Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B. 2012;171–172:1029–37.CrossRef
38.
Zurück zum Zitat Zhong F, Wu Z, Guo J, Jia D. Ni-doped ZnS nanospheres decorated with Au nanoparticles for highly improved gas sensor performance. Sensors. 2018;18(9):2882.ADSCrossRef Zhong F, Wu Z, Guo J, Jia D. Ni-doped ZnS nanospheres decorated with Au nanoparticles for highly improved gas sensor performance. Sensors. 2018;18(9):2882.ADSCrossRef
39.
Zurück zum Zitat Lin F, Lai Z, Zhang L, Huang Y, Li F, Chen P, et al. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchim Acta. 2020;187(1):1–9.CrossRef Lin F, Lai Z, Zhang L, Huang Y, Li F, Chen P, et al. Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Microchim Acta. 2020;187(1):1–9.CrossRef
40.
Zurück zum Zitat Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of au-functionalized ZnS nanowires. Sens Actuators B. 2013;188:1270–6.CrossRef Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of au-functionalized ZnS nanowires. Sens Actuators B. 2013;188:1270–6.CrossRef
41.
Zurück zum Zitat Park S, An S, Mun Y, Lee C. UV-activated gas sensing properties of ZnS nanorods functionalized with Pd. Curr Appl Phys. 2014;14(SUPPL. 1):S57–62.ADSCrossRef Park S, An S, Mun Y, Lee C. UV-activated gas sensing properties of ZnS nanorods functionalized with Pd. Curr Appl Phys. 2014;14(SUPPL. 1):S57–62.ADSCrossRef
42.
Zurück zum Zitat Prokopenko SL, Gunya GM, Makhno SM, Gorbyk PP. Room-temperature gas sensor based on semiconductor nanoscale heterostructures ZnS/CdS. Him Fiz ta Tehnol Poverhni. 2017;8(4):432–8.CrossRef Prokopenko SL, Gunya GM, Makhno SM, Gorbyk PP. Room-temperature gas sensor based on semiconductor nanoscale heterostructures ZnS/CdS. Him Fiz ta Tehnol Poverhni. 2017;8(4):432–8.CrossRef
43.
Zurück zum Zitat Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.ADSCrossRef Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.ADSCrossRef
44.
Zurück zum Zitat Ding P, Xu D, Dong N, Chen Y, Xu P, Zheng D, et al. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chem Lett. 2020;31(8):2050–4.CrossRef Ding P, Xu D, Dong N, Chen Y, Xu P, Zheng D, et al. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chem Lett. 2020;31(8):2050–4.CrossRef
45.
Zurück zum Zitat Hieu NM, Van Lam D, Hien TT, Chinh ND, Quang ND, Hung NM, et al. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des. 2020;191:108628.CrossRef Hieu NM, Van Lam D, Hien TT, Chinh ND, Quang ND, Hung NM, et al. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des. 2020;191:108628.CrossRef
46.
Zurück zum Zitat Zhang H, Jin Z, Da Xu M, Zhang Y, Huang J, Cheng H, et al. Enhanced isopropanol sensing performance of the CdS nanoparticle decorated ZnO porous nanosheets-based gas sensors. IEEE Sensors J. 2021;21(12):13041–7.ADSCrossRef Zhang H, Jin Z, Da Xu M, Zhang Y, Huang J, Cheng H, et al. Enhanced isopropanol sensing performance of the CdS nanoparticle decorated ZnO porous nanosheets-based gas sensors. IEEE Sensors J. 2021;21(12):13041–7.ADSCrossRef
47.
Zurück zum Zitat Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.CrossRef Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.CrossRef
48.
Zurück zum Zitat Tsai YS, Chou TW, Xu CY, Chang Huang W, Lin CF, Wu YCS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.CrossRef Tsai YS, Chou TW, Xu CY, Chang Huang W, Lin CF, Wu YCS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.CrossRef
49.
Zurück zum Zitat Arunraja L, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V. Investigation and characterization of ZnO/CdS nanocomposites using chemical precipitation method for gas sensing applications. J Mater Sci Mater Electron. 2017;28(23):18113–20.CrossRef Arunraja L, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V. Investigation and characterization of ZnO/CdS nanocomposites using chemical precipitation method for gas sensing applications. J Mater Sci Mater Electron. 2017;28(23):18113–20.CrossRef
50.
Zurück zum Zitat Šetka M, Bahos FA, Chmela O, Matatagui D, Gràcia I, Drbohlavová J, et al. Cadmium telluride/polypyrrole nanocomposite based love wave sensors highly sensitive to acetone at room temperature. Sens Actuators B. 2020;321:128573.CrossRef Šetka M, Bahos FA, Chmela O, Matatagui D, Gràcia I, Drbohlavová J, et al. Cadmium telluride/polypyrrole nanocomposite based love wave sensors highly sensitive to acetone at room temperature. Sens Actuators B. 2020;321:128573.CrossRef
51.
Zurück zum Zitat Kim D, Park KM, Shanmugam R, Yoo B. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application. J Nanosci Nanotechnol. 2014;14(11):8248–52.CrossRef Kim D, Park KM, Shanmugam R, Yoo B. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application. J Nanosci Nanotechnol. 2014;14(11):8248–52.CrossRef
52.
Zurück zum Zitat Qin N, Xiang Q, Zhao H, Zhang J, Xu J. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm. 2014;16(30):7062–73.CrossRef Qin N, Xiang Q, Zhao H, Zhang J, Xu J. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm. 2014;16(30):7062–73.CrossRef
53.
Zurück zum Zitat Patel NG, Panchal CJ, Makhija KK. Use of cadmium selenide thin films as a carbon dioxide gas sensor. Cryst Res Technol. 1994;29(7):1013–20.CrossRef Patel NG, Panchal CJ, Makhija KK. Use of cadmium selenide thin films as a carbon dioxide gas sensor. Cryst Res Technol. 1994;29(7):1013–20.CrossRef
54.
Zurück zum Zitat Maserati L, Moreels I, Prato M, Krahne R, Manna L, Zhang Y. Oxygen sensitivity of atomically passivated CdS nanocrystal films. ACS Appl Mater Interfaces. 2014;6(12):9517–23.CrossRef Maserati L, Moreels I, Prato M, Krahne R, Manna L, Zhang Y. Oxygen sensitivity of atomically passivated CdS nanocrystal films. ACS Appl Mater Interfaces. 2014;6(12):9517–23.CrossRef
55.
Zurück zum Zitat Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro -and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5. Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro -and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5.
56.
Zurück zum Zitat Laatar F, Harizi A, Zarroug A, Ghrib M, Hassen M, Gaidi M, et al. Novel CdSe nanorods/porous anodic alumina nanocomposite-based ethanol sensor: sensitivity enhancement by visible light illumination. J Mater Sci Mater Electron. 2017;28(16):12259–67.CrossRef Laatar F, Harizi A, Zarroug A, Ghrib M, Hassen M, Gaidi M, et al. Novel CdSe nanorods/porous anodic alumina nanocomposite-based ethanol sensor: sensitivity enhancement by visible light illumination. J Mater Sci Mater Electron. 2017;28(16):12259–67.CrossRef
57.
Zurück zum Zitat Podgornyi SO, Demeshko IP, Podgornaya OT, Lukoyanova OV, Skutin ED, Fedotova KI. Cadmium telluride nanofilms application in carbon monoxide detection. In: Proceedings of Dyn Syst Mech Mach Dyn, 15–17 November 2016, Omsk, p. 16602519. Podgornyi SO, Demeshko IP, Podgornaya OT, Lukoyanova OV, Skutin ED, Fedotova KI. Cadmium telluride nanofilms application in carbon monoxide detection. In: Proceedings of Dyn Syst Mech Mach Dyn, 15–17 November 2016, Omsk, p. 16602519.
58.
Zurück zum Zitat Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.ADSCrossRef Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.ADSCrossRef
59.
Zurück zum Zitat Bube RH. Surface photoconductivity in cadmium sulfide crystals. J Chem Phys. 2004;21(8):1409.ADSCrossRef Bube RH. Surface photoconductivity in cadmium sulfide crystals. J Chem Phys. 2004;21(8):1409.ADSCrossRef
60.
Zurück zum Zitat Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1998;68(10):3898.ADSCrossRef Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1998;68(10):3898.ADSCrossRef
61.
Zurück zum Zitat Park S, Kim S, Ko H, Lee C. Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature. J Electroceram. 2014;33(1–2):75–81.CrossRef Park S, Kim S, Ko H, Lee C. Light-enhanced gas sensing of ZnS-core/ZnO-shell nanowires at room temperature. J Electroceram. 2014;33(1–2):75–81.CrossRef
62.
Zurück zum Zitat Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X, et al. CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater. 2014;2(8):738–45. Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X, et al. CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater. 2014;2(8):738–45.
63.
Zurück zum Zitat Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens Actuators B. 2014;205:305–12.CrossRef Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens Actuators B. 2014;205:305–12.CrossRef
64.
Zurück zum Zitat Geng X, Zhang C, Debliquy M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram Int. 2016;42(4):4845–52.CrossRef Geng X, Zhang C, Debliquy M. Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram Int. 2016;42(4):4845–52.CrossRef
65.
Zurück zum Zitat Park S, Kim S, Ko H, Lee C. Light assisted room temperature ethanol gas sensing of ZnO-ZnS nanowires. J Nanosci Nanotechnol. 2014;14(12):9025–8.CrossRef Park S, Kim S, Ko H, Lee C. Light assisted room temperature ethanol gas sensing of ZnO-ZnS nanowires. J Nanosci Nanotechnol. 2014;14(12):9025–8.CrossRef
66.
Zurück zum Zitat Wu B, Lin Z, Sheng M, Hou S, Xu J. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Appl Surf Sci. 2016;360:652–7.ADSCrossRef Wu B, Lin Z, Sheng M, Hou S, Xu J. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Appl Surf Sci. 2016;360:652–7.ADSCrossRef
67.
Zurück zum Zitat Dengo N, De Fazio AF, Weiss M, Marschall R, Dolcet P, Fanetti M, et al. Thermal evolution of ZnS nanostructures: effect of oxidation phenomena on structural features and photocatalytical performances. Inorg Chem. 2018;57(21):13104–14.CrossRef Dengo N, De Fazio AF, Weiss M, Marschall R, Dolcet P, Fanetti M, et al. Thermal evolution of ZnS nanostructures: effect of oxidation phenomena on structural features and photocatalytical performances. Inorg Chem. 2018;57(21):13104–14.CrossRef
68.
Zurück zum Zitat Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798. Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798.
69.
Zurück zum Zitat Schultze D, Steinike U, Kussin J, Kretzschmar U. Thermal oxidation of ZnS modifications sphalerite and wurtzite. Cryst Res Technol. 1995;30(4):553–8.CrossRef Schultze D, Steinike U, Kussin J, Kretzschmar U. Thermal oxidation of ZnS modifications sphalerite and wurtzite. Cryst Res Technol. 1995;30(4):553–8.CrossRef
70.
Zurück zum Zitat Murugadoss G. Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J Lumin. 2011;131(10):2216–23.CrossRef Murugadoss G. Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method. J Lumin. 2011;131(10):2216–23.CrossRef
71.
Zurück zum Zitat Trenczek-Zajac A. Thermally oxidized CdS as a photoactive material. New J Chem. 2019;43(23):8892–902.CrossRef Trenczek-Zajac A. Thermally oxidized CdS as a photoactive material. New J Chem. 2019;43(23):8892–902.CrossRef
72.
Zurück zum Zitat Eom NSA, Kim TS, Choa YH, Kim WB, Kim BS. Surface oxidation behaviors of Cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14(10):8024–7.CrossRef Eom NSA, Kim TS, Choa YH, Kim WB, Kim BS. Surface oxidation behaviors of Cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14(10):8024–7.CrossRef
Metadaten
Titel
II-VI Semiconductor-Based Thin Film Electric and Electronic Gas Sensors
verfasst von
Stella Vallejos
Chris Blackman
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.