Skip to main content
Top

2023 | OriginalPaper | Chapter

6. Introduction in Gas Sensing

Authors : Ghenadii Korotcenkov, Vladimir Brinzari

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is a kind of introduction to the subject of gas sensing, which is discussed in the following chapters. In particular, the need to control the composition of the gas atmosphere in various fields from environmental monitoring and process control to medicine and agriculture is substantiated. It also provides a classification and description of the principles of operation of various sensors used to detect toxic and explosive gases. The properties of II-VI compounds are compared with those of metal oxides, and a conclusion is made about the prospects of these compounds for the development of efficient gas sensors, such as conductometric and optical gas sensors. Examples of the implementation of such sensors based on II-VI compounds are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cleaver KD. The analysis of process gases: a review. Accred Qual Assur. 2001;6(1):8–15.CrossRef Cleaver KD. The analysis of process gases: a review. Accred Qual Assur. 2001;6(1):8–15.CrossRef
2.
go back to reference Yamazoe N. Toward innovations of gas sensor technology. Sens Actuators B Chem. 2005;108:2–14. Yamazoe N. Toward innovations of gas sensor technology. Sens Actuators B Chem. 2005;108:2–14.
3.
go back to reference Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 6, Sensors application. New York: Momentum Press; 2011a. Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 6, Sensors application. New York: Momentum Press; 2011a.
4.
go back to reference Fine GF, Cavanagh LM, Afonja A, Binions R. Metal oxide semiconductor gas sensors in environmental monitoring. Sensors. 2010;10:5469–502.ADSCrossRef Fine GF, Cavanagh LM, Afonja A, Binions R. Metal oxide semiconductor gas sensors in environmental monitoring. Sensors. 2010;10:5469–502.ADSCrossRef
5.
go back to reference Docquier N, Candel S. Combustion control and sensor: a review. Prog Energy Combustion Sci. 2002;28:107–50.CrossRef Docquier N, Candel S. Combustion control and sensor: a review. Prog Energy Combustion Sci. 2002;28:107–50.CrossRef
6.
go back to reference Kowaiski BR, Bender CF. Pattern recognition: a powerful approach to interpreting chemical data. J Am Chem Soc. 1972;94:5632–9.CrossRef Kowaiski BR, Bender CF. Pattern recognition: a powerful approach to interpreting chemical data. J Am Chem Soc. 1972;94:5632–9.CrossRef
7.
go back to reference Gardner JW. Detection of vapours and odours from a multisensor array using pattern recognition: principal component and cluster analysis. Sens Actuators. 1991;4:109–15. Gardner JW. Detection of vapours and odours from a multisensor array using pattern recognition: principal component and cluster analysis. Sens Actuators. 1991;4:109–15.
8.
go back to reference Gardner JW, Bartlett PN. Electronic noses. Principles and applications. Oxford, UK: Oxford University Press; 1999. Gardner JW, Bartlett PN. Electronic noses. Principles and applications. Oxford, UK: Oxford University Press; 1999.
9.
go back to reference Korotcenkov G, Stetter JR. Chemical gas mixture analysis and the electronic nose: current status, future trends. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 6. Chemical sensors applications. New York: Momentum Press; 2011. p. 1–56. Korotcenkov G, Stetter JR. Chemical gas mixture analysis and the electronic nose: current status, future trends. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 6. Chemical sensors applications. New York: Momentum Press; 2011. p. 1–56.
10.
go back to reference Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9:5099–148.ADSCrossRef Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9:5099–148.ADSCrossRef
11.
go back to reference Kharitonov SA, Barnes PJ. Clinical aspects of exhaled nitric oxide. Eur Respir J. 2000;16:781–92.CrossRef Kharitonov SA, Barnes PJ. Clinical aspects of exhaled nitric oxide. Eur Respir J. 2000;16:781–92.CrossRef
12.
go back to reference Cao W, Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem. 2006;52(5):800–11.CrossRef Cao W, Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem. 2006;52(5):800–11.CrossRef
13.
go back to reference Korotcenkov G. Chemical sensors: comprehensive sensor technologies. Vol. 4: Solid state devices. New York: Momentum Press; 2011. Korotcenkov G. Chemical sensors: comprehensive sensor technologies. Vol. 4: Solid state devices. New York: Momentum Press; 2011.
14.
go back to reference Korotcenkov G. Chemical sensors: comprehensive sensor technologies. Vol. 5: Electrochemical and optical sensors. New York: Momentum Press; 2011. Korotcenkov G. Chemical sensors: comprehensive sensor technologies. Vol. 5: Electrochemical and optical sensors. New York: Momentum Press; 2011.
15.
go back to reference Korotcenkov G, Han S-D, Stetter JR. Review of electrochemical hydrogen sensors. Chem Rev. 2009;109(3):1402–33.CrossRef Korotcenkov G, Han S-D, Stetter JR. Review of electrochemical hydrogen sensors. Chem Rev. 2009;109(3):1402–33.CrossRef
16.
go back to reference Stetter JR, Korotcenkov G, Zeng X, Tang Y, Liu Y. Electrochemical gas sensors: fundamentals, fabrication and parameters. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 3: Electrochemical and optical sensors. New York: Momentum Press; 2011. p. 1–123. Stetter JR, Korotcenkov G, Zeng X, Tang Y, Liu Y. Electrochemical gas sensors: fundamentals, fabrication and parameters. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 3: Electrochemical and optical sensors. New York: Momentum Press; 2011. p. 1–123.
17.
go back to reference Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Myers E, Roukes ML. Gas sensors based on gravimetric detection—A review. Sens Actuators B. 2011;160:804–21.CrossRef Fanget S, Hentz S, Puget P, Arcamone J, Matheron M, Colinet E, Andreucci P, Duraffourg L, Myers E, Roukes ML. Gas sensors based on gravimetric detection—A review. Sens Actuators B. 2011;160:804–21.CrossRef
18.
go back to reference Miller JB. Catalytic sensors for monitoring explosive atmospheres. IEEE Sensors J. 2001;1(1):88–93.ADSCrossRef Miller JB. Catalytic sensors for monitoring explosive atmospheres. IEEE Sensors J. 2001;1(1):88–93.ADSCrossRef
19.
go back to reference Korotcenkov G. Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem. 2007;121:664–78. Korotcenkov G. Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem. 2007;121:664–78.
20.
go back to reference Merilainen PT. A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit. 1990;6(1):65–73.CrossRef Merilainen PT. A differential paramagnetic sensor for breath-by-breath oximetry. J Clin Monit. 1990;6(1):65–73.CrossRef
21.
go back to reference Ho CK, Robinson A, Miller DR, Davis MJ. Overview of sensors and needs for environmental monitoring. Sensors. 2005;5:4–37.ADSCrossRef Ho CK, Robinson A, Miller DR, Davis MJ. Overview of sensors and needs for environmental monitoring. Sensors. 2005;5:4–37.ADSCrossRef
22.
go back to reference Chou J. Hazardous gas monitors: a practical guide to selection, operation and application. New York: McGraw-Hill; 2000. Chou J. Hazardous gas monitors: a practical guide to selection, operation and application. New York: McGraw-Hill; 2000.
23.
go back to reference Potyrailo RA, Mirsky VM. Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev B. 2008;108:770–813.CrossRef Potyrailo RA, Mirsky VM. Combinatorial and high-throughput development of sensing materials: the first 10 years. Chem Rev B. 2008;108:770–813.CrossRef
24.
go back to reference Korotcenkov G, editor. Chemical sensors: fundamentals of sensor materials, vol. 1-3. New York: Momentum Press; 2010. Korotcenkov G, editor. Chemical sensors: fundamentals of sensor materials, vol. 1-3. New York: Momentum Press; 2010.
25.
go back to reference Sadaoka Y. Organic semiconductor gas sensors. In: Sberveglieri G, editor. Gas sensors. Dordrecht: Kluwer Academic; 1992. p. 187–218.CrossRef Sadaoka Y. Organic semiconductor gas sensors. In: Sberveglieri G, editor. Gas sensors. Dordrecht: Kluwer Academic; 1992. p. 187–218.CrossRef
26.
go back to reference Monkman G. Monomolecular Langmuir-Blodgett films—Tomorrow’s sensors? Sensor Rev. 2000;20:127–31.CrossRef Monkman G. Monomolecular Langmuir-Blodgett films—Tomorrow’s sensors? Sensor Rev. 2000;20:127–31.CrossRef
27.
go back to reference Talazac L, Brunet J, Battut V, Blanc JP, Pauly A, Germain JP, Pellier S, Soulier C. Air quality evaluation by monolithic InP-based resistive sensors. Sens Actuators B Chem. 2001;76:258–64. Talazac L, Brunet J, Battut V, Blanc JP, Pauly A, Germain JP, Pellier S, Soulier C. Air quality evaluation by monolithic InP-based resistive sensors. Sens Actuators B Chem. 2001;76:258–64.
28.
go back to reference Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors: a comprehensive review. Crit Rev Solid State Mater Sci. 2004;29:111–88.ADSCrossRef Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors: a comprehensive review. Crit Rev Solid State Mater Sci. 2004;29:111–88.ADSCrossRef
29.
go back to reference Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci. 2004;29:699–766.CrossRef Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci. 2004;29:699–766.CrossRef
30.
go back to reference Korotcenkov G. Handbook of gas sensor materials, vol. 1 and 2. New York: Springer; 2013.CrossRef Korotcenkov G. Handbook of gas sensor materials, vol. 1 and 2. New York: Springer; 2013.CrossRef
31.
go back to reference Korotcenkov G. Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B. 2007;139:1–23.CrossRef Korotcenkov G. Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B. 2007;139:1–23.CrossRef
32.
go back to reference Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagir G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798.CrossRef Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagir G. Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater. 2013;2013:351798.CrossRef
33.
go back to reference Eom NSA, Kim T-S, Choa Y-H, Kim W-B, Kim BS. Surface oxidation behaviors of cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14:8024–7.CrossRef Eom NSA, Kim T-S, Choa Y-H, Kim W-B, Kim BS. Surface oxidation behaviors of cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol. 2014;14:8024–7.CrossRef
34.
go back to reference Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, Hiie J. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.CrossRef Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, Hiie J. Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia. 2014;44:77–84.CrossRef
35.
go back to reference Zajac AT. On the thermally oxidized CdS as a photoactive material. New J Chem. 2019;43:8892–902.CrossRef Zajac AT. On the thermally oxidized CdS as a photoactive material. New J Chem. 2019;43:8892–902.CrossRef
36.
go back to reference Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22:1433–6.ADSCrossRef Kurtin S, McGill TC, Mead CA. Fundamental transition in the electronic nature of solids. Phys Rev Lett. 1969;22:1433–6.ADSCrossRef
37.
go back to reference Seker F, Meeker K, Kuech TF, Ellis AB. Surface chemistry of prototypical bulk II−VI and III−V semiconductors and implications for chemical sensing. Chem Rev. 2000;100:2505–36.CrossRef Seker F, Meeker K, Kuech TF, Ellis AB. Surface chemistry of prototypical bulk II−VI and III−V semiconductors and implications for chemical sensing. Chem Rev. 2000;100:2505–36.CrossRef
38.
go back to reference Korotcenkov G, Sysoev V. Conductometric metal oxide gas sensors. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 4. Solid state devices. New York: Momentum Press; 2011. p. 53–186. Korotcenkov G, Sysoev V. Conductometric metal oxide gas sensors. In: Korotcenkov G, editor. Chemical sensors: comprehensive sensor technologies. Vol. 4. Solid state devices. New York: Momentum Press; 2011. p. 53–186.
39.
go back to reference Semancik S, Cavicchi RE, Wheeler MC, Tiffany JF, Poirier GE, Walton RM, et al. Microhotplate platform for chemical sensor research. Sens Actuators B Chem. 2001;77:579–91. Semancik S, Cavicchi RE, Wheeler MC, Tiffany JF, Poirier GE, Walton RM, et al. Microhotplate platform for chemical sensor research. Sens Actuators B Chem. 2001;77:579–91.
40.
go back to reference Korotcenkov G, Cho BK. Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B. 2017;244:182–210. Korotcenkov G, Cho BK. Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B. 2017;244:182–210.
41.
go back to reference Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V. The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem. 2007;128:51–63. Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V. The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem. 2007;128:51–63.
42.
go back to reference Barsan N, Schierbaum K, editors. Gas sensors based on conducting metal oxides, Elsevier metal oxide series. Korotcenkov G, editor. Cambridge, MA: Elsevier; 2018. ISBN: 9780128112243. Barsan N, Schierbaum K, editors. Gas sensors based on conducting metal oxides, Elsevier metal oxide series. Korotcenkov G, editor. Cambridge, MA: Elsevier; 2018. ISBN: 9780128112243.
43.
go back to reference Brinzari V, Korotcenkov G. Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration. Sens Actuators B. 2018;259:443–54.CrossRef Brinzari V, Korotcenkov G. Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration. Sens Actuators B. 2018;259:443–54.CrossRef
44.
go back to reference Brynzari V, Korotchenkov G, Dmitriev S. Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol. 2000;33:225–35. Brynzari V, Korotchenkov G, Dmitriev S. Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol. 2000;33:225–35.
45.
go back to reference Korotcenkov G, editor. Chemical sensors: simulation and modeling. Vol. 2: Conductometric gas sensors. New York: Momentum Press; 2012. Korotcenkov G, editor. Chemical sensors: simulation and modeling. Vol. 2: Conductometric gas sensors. New York: Momentum Press; 2012.
46.
go back to reference Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro - and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5. Nesheva D, Aneva Z, Reynolds S, Main C, Fitzgerald AG. Preparation of micro - and nanocrystalline CdSe and CdS thin films suitable for sensor applications. J Optoelectron Adv Mater. 2006;8(6):2120–5.
47.
go back to reference Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R. 2008;61(2008):1–39.CrossRef Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R. 2008;61(2008):1–39.CrossRef
48.
go back to reference Lantto V, Golovanov V. A comparison of conductance behaviour between SnO2 and CdS gas-sensitive films. Sens Actuators B Chem. 1995;24-25:614–8. Lantto V, Golovanov V. A comparison of conductance behaviour between SnO2 and CdS gas-sensitive films. Sens Actuators B Chem. 1995;24-25:614–8.
49.
go back to reference Xu L, Song H, Zhang T, Fan H, Fan L, Wang Y, Dong B, Bai X. A novel ethanol gas sensor-ZnS/cyclohexylamine hybrid nanowires. J Nanosci Nanotechnol. 2011;11(3):2121–5.CrossRef Xu L, Song H, Zhang T, Fan H, Fan L, Wang Y, Dong B, Bai X. A novel ethanol gas sensor-ZnS/cyclohexylamine hybrid nanowires. J Nanosci Nanotechnol. 2011;11(3):2121–5.CrossRef
50.
go back to reference Afify HH, Battisha IK. Oxygen interaction with CdS based gas sensors by varying different preparation parameters. Ind J Pure Appl Physics. 2000;38(2):119–26. Afify HH, Battisha IK. Oxygen interaction with CdS based gas sensors by varying different preparation parameters. Ind J Pure Appl Physics. 2000;38(2):119–26.
51.
go back to reference Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1997;68(10):3898–902.ADSCrossRef Miremadi BK, Colbow K, Harima Y. A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment. Rev Sci Instrum. 1997;68(10):3898–902.ADSCrossRef
52.
go back to reference Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies. Vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018. Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies. Vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018.
53.
go back to reference Wolfbeis OS. Fiber optic chemical sensors and biosensors, vol. 1 and 2. Boca Raton: CRC Press; 1991/1992. Wolfbeis OS. Fiber optic chemical sensors and biosensors, vol. 1 and 2. Boca Raton: CRC Press; 1991/1992.
54.
go back to reference Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum Press; 1999.CrossRef Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum Press; 1999.CrossRef
55.
go back to reference Valeur B, Brochon JC, editors. New trends in fluorescence spectroscopy: applications to chemical and life sciences. Berlin: Springer; 2001. Valeur B, Brochon JC, editors. New trends in fluorescence spectroscopy: applications to chemical and life sciences. Berlin: Springer; 2001.
56.
go back to reference Baldini F, Chester AN, Homola J, Martellucci S, editors. Optical chemical sensors. Dordrecht: Springer; 2006. Baldini F, Chester AN, Homola J, Martellucci S, editors. Optical chemical sensors. Dordrecht: Springer; 2006.
57.
go back to reference Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985;56:921–4.ADSCrossRef Ekimov AI, Efros AL, Onushchenko AA. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985;56:921–4.ADSCrossRef
58.
go back to reference Costa-Fernandez JM. Optical sensors based on luminescent quantum dots. Anal Bioanal Chem. 2006;384:37–40.CrossRef Costa-Fernandez JM. Optical sensors based on luminescent quantum dots. Anal Bioanal Chem. 2006;384:37–40.CrossRef
59.
go back to reference Jorge P, Martins MA, Trindade T, Santos JL, Farahi F. Optical fiber sensing using quantum dots. Sensors. 2007;7:3489–534.ADSCrossRef Jorge P, Martins MA, Trindade T, Santos JL, Farahi F. Optical fiber sensing using quantum dots. Sensors. 2007;7:3489–534.ADSCrossRef
60.
go back to reference Callan JF, De Silva AP, Mulrooney RC, McCaughan B. Luminescent sensing with quantum dots. J Incl Phenom Macrocycl Chem. 2007;58:257–62.CrossRef Callan JF, De Silva AP, Mulrooney RC, McCaughan B. Luminescent sensing with quantum dots. J Incl Phenom Macrocycl Chem. 2007;58:257–62.CrossRef
61.
go back to reference Smith AM, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 2010;43(2):190–200.CrossRef Smith AM, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 2010;43(2):190–200.CrossRef
62.
go back to reference Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–7.ADSCrossRef Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–7.ADSCrossRef
63.
go back to reference Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004;14:497–504.CrossRef Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004;14:497–504.CrossRef
64.
go back to reference Chen W, Wang Z, Lin Z, Lin L, Efros AL, Rosen M. Absorption and luminescence of the surface states in ZnS nanoparticles. J Appl Phys. 1997;82:3111–5.ADSCrossRef Chen W, Wang Z, Lin Z, Lin L, Efros AL, Rosen M. Absorption and luminescence of the surface states in ZnS nanoparticles. J Appl Phys. 1997;82:3111–5.ADSCrossRef
65.
go back to reference Luo L, Chen H, Zhang L, Xu K, Lv Y. A cataluminescence gas sensor for carbon tetrachloride based on nanosized ZnS. Anal Chim Acta. 2009;635:183–7.CrossRef Luo L, Chen H, Zhang L, Xu K, Lv Y. A cataluminescence gas sensor for carbon tetrachloride based on nanosized ZnS. Anal Chim Acta. 2009;635:183–7.CrossRef
66.
go back to reference Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 2002;74:5132–8.CrossRef Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 2002;74:5132–8.CrossRef
67.
go back to reference Nazzal AY, Qu L, Peng X, Min XM. Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 2003;3(6):819–22.ADSCrossRef Nazzal AY, Qu L, Peng X, Min XM. Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 2003;3(6):819–22.ADSCrossRef
68.
go back to reference Potyrailo RA, Leach AM. Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl Phys Lett. 2006;88(13):134110.ADSCrossRef Potyrailo RA, Leach AM. Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl Phys Lett. 2006;88(13):134110.ADSCrossRef
69.
go back to reference Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA. Surface-functionalized CdSe quantum dots for the detection of hydrocarbons. Sens Actuators B Chem. 2007;123:522–9. Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA. Surface-functionalized CdSe quantum dots for the detection of hydrocarbons. Sens Actuators B Chem. 2007;123:522–9.
70.
go back to reference Norhayati AB, Aidhia R, Akrajas AU, Muhamad MS, Yahaya M. Fluorescence gas sensor using CdTe quantum dots film to detect volatile organic compounds. Mater Sci Forum. 2010;663-665:276–9.CrossRef Norhayati AB, Aidhia R, Akrajas AU, Muhamad MS, Yahaya M. Fluorescence gas sensor using CdTe quantum dots film to detect volatile organic compounds. Mater Sci Forum. 2010;663-665:276–9.CrossRef
71.
go back to reference Mohanta D, Nath SS, Mishara NC, Choudhury A. Irradiation induced gain growth and surface emission enhancement of ZnS:Mn/PVOH semiconductor nano particles by Cl+9 ion impact. Bull Mater Sci. 2003;26:289–94.CrossRef Mohanta D, Nath SS, Mishara NC, Choudhury A. Irradiation induced gain growth and surface emission enhancement of ZnS:Mn/PVOH semiconductor nano particles by Cl+9 ion impact. Bull Mater Sci. 2003;26:289–94.CrossRef
72.
go back to reference Xu H, Wu J, Chen C-H, Zhang L, Yang K-L. Detecting hydrogen sulfide by using transparent polymer with embedded CdSe/CdS quantum dots. Sens Actuators B Chem. 2010;143:535–8. Xu H, Wu J, Chen C-H, Zhang L, Yang K-L. Detecting hydrogen sulfide by using transparent polymer with embedded CdSe/CdS quantum dots. Sens Actuators B Chem. 2010;143:535–8.
73.
go back to reference Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals. J Phys Chem. 1996;100:468–71.CrossRef Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals. J Phys Chem. 1996;100:468–71.CrossRef
74.
go back to reference Xie R, Kolb U, Li J, Basché T, Mews A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc. 2005;127:7480–8.CrossRef Xie R, Kolb U, Li J, Basché T, Mews A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc. 2005;127:7480–8.CrossRef
75.
go back to reference Chaudhuri RD, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–433.CrossRef Chaudhuri RD, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–433.CrossRef
Metadata
Title
Introduction in Gas Sensing
Authors
Ghenadii Korotcenkov
Vladimir Brinzari
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_6

Premium Partners