Skip to main content
Top
Published in: Rare Metals 5/2022

19-09-2014

Improvement of cycle behavior of Si/Sn anode composite supported by stable Si–O–C skeleton

Authors: Jian-Tao Wang, Shi-Gang Lu, Yao Wang, Bin Huang, Juan-Yu Yang, Ao Tan

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Si/Sn/SiOC/graphite (SSSG) composite with high efficiency and long-term cycling stability was synthesized by a cost-effective and scalable method, including the processes of mechanical milling and pyrolysis. The composite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectrometry (EDX). The electrochemical properties were investigated until the 25th cycle. As a result, the SSSG composite anode exhibits excellent long-term cycling stability and capacity. Such SSSG composite anode shows excellent cycling stability with a specific capacity of 568.2 mAh·g−1 and ∼80 % capacity retention over 25 cycles at 0.3C rate. The reasons for good electrochemical characteristics are considered that the SiOC net with favorable chemical stability acts as a skeleton to support and segregate Si/Sn nanostructures, and the graphitic mixing in the composite is used as conductive material to enhance the electrical conductivity in this composite. The results suggest that the design of this new structure has the potential to provide a way for the other functional composite materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Armand M, Tarascon J. Building better batteries. Nature. 2008;451(7179):652.CrossRef Armand M, Tarascon J. Building better batteries. Nature. 2008;451(7179):652.CrossRef
[2]
go back to reference Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4(11):805.CrossRef Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4(11):805.CrossRef
[3]
go back to reference Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.CrossRef Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.CrossRef
[4]
go back to reference Zhao L, Pan HL, Hu YS, Li H, Chen LQ. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B. 2012;21(2):028201.CrossRef Zhao L, Pan HL, Hu YS, Li H, Chen LQ. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B. 2012;21(2):028201.CrossRef
[5]
go back to reference Beaulieu L, Hewitt K, Turner R, Bonakdarpour A, Abdo A, Christensen L, Eberman K, Krause L, Dahn J. The electrochemical reaction of Li with amorphous Si–Sn alloys. J Electrochem Soc. 2003;150(2):A149.CrossRef Beaulieu L, Hewitt K, Turner R, Bonakdarpour A, Abdo A, Christensen L, Eberman K, Krause L, Dahn J. The electrochemical reaction of Li with amorphous Si–Sn alloys. J Electrochem Soc. 2003;150(2):A149.CrossRef
[6]
go back to reference Kasavajjula U, Wang C, Appleby A. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources. 2007;163(2):1003.CrossRef Kasavajjula U, Wang C, Appleby A. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources. 2007;163(2):1003.CrossRef
[7]
go back to reference Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320. Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320.
[8]
go back to reference Wolfenstine J. Critical grain size for microcracking during lithium insertion. J Power Sources. 1999;79(1):111.CrossRef Wolfenstine J. Critical grain size for microcracking during lithium insertion. J Power Sources. 1999;79(1):111.CrossRef
[9]
go back to reference Ehinon K, Naille S, Dedryvère R, Lippens P, Jumas J, Gonbeau D. Ni3Sn4 electrodes for Li-ion batteries: Li−Sn alloying process and electrode/electrolyte interface phenomena. Chem Mater. 2008;20(16):5388.CrossRef Ehinon K, Naille S, Dedryvère R, Lippens P, Jumas J, Gonbeau D. Ni3Sn4 electrodes for Li-ion batteries: Li−Sn alloying process and electrode/electrolyte interface phenomena. Chem Mater. 2008;20(16):5388.CrossRef
[10]
go back to reference Cheng X, Shi P. Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery. J. Alloys Compd. 2005;391:241.CrossRef Cheng X, Shi P. Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery. J. Alloys Compd. 2005;391:241.CrossRef
[11]
go back to reference Lee H, Jang W, Lee S, Baik H. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal. J Power Sources. 2002;112(1):8.CrossRef Lee H, Jang W, Lee S, Baik H. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal. J Power Sources. 2002;112(1):8.CrossRef
[12]
go back to reference Naille S, Dedryvère R, Zitoun D, Lippens P. Effect of the cross-linking agent on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with tris(2-(acryloyloxy)ethyl) phosphate. J Power Sources. 2009;189(1):806.CrossRef Naille S, Dedryvère R, Zitoun D, Lippens P. Effect of the cross-linking agent on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with tris(2-(acryloyloxy)ethyl) phosphate. J Power Sources. 2009;189(1):806.CrossRef
[13]
go back to reference Naille S, Dedryvère R, Martinez H, Leroy S, Lippens P, Jumas J, Gonbeaub J. XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries. J Power Sources. 2007;174(2):1086.CrossRef Naille S, Dedryvère R, Martinez H, Leroy S, Lippens P, Jumas J, Gonbeaub J. XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries. J Power Sources. 2007;174(2):1086.CrossRef
[14]
go back to reference Zhang C, Tu J, Huang X, Yuan Y, Wang S, Mao F. Preparation and electrochemical performances of nanoscale FeSn2 as anode material for lithium ion batteries. J. Alloys Compd. 2008;457(1):81.CrossRef Zhang C, Tu J, Huang X, Yuan Y, Wang S, Mao F. Preparation and electrochemical performances of nanoscale FeSn2 as anode material for lithium ion batteries. J. Alloys Compd. 2008;457(1):81.CrossRef
[15]
go back to reference Wang G, Sun L, Bradhurst D, Zhong S, Dou S, Liu H. Innovative nanosize lithium storage alloys with silica as active centre. J Power Sources. 2000;88(2):278.CrossRef Wang G, Sun L, Bradhurst D, Zhong S, Dou S, Liu H. Innovative nanosize lithium storage alloys with silica as active centre. J Power Sources. 2000;88(2):278.CrossRef
[16]
go back to reference Hiroshi F, Hisashi O, Takakazu H, Kiyoshi K. A Si−O−C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. ACS App Mater Interfaces. 2010;2(4):998.CrossRef Hiroshi F, Hisashi O, Takakazu H, Kiyoshi K. A Si−O−C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. ACS App Mater Interfaces. 2010;2(4):998.CrossRef
[17]
go back to reference Hiroshi F, Hisashi O, Takakazu H, Kiyoshi K. Polysilane/acenaphthylene blends toward Si–O–C composite anodes for rechargeable lithium-ion batteries. J Electrochem Soc. 2011;158:A550.CrossRef Hiroshi F, Hisashi O, Takakazu H, Kiyoshi K. Polysilane/acenaphthylene blends toward Si–O–C composite anodes for rechargeable lithium-ion batteries. J Electrochem Soc. 2011;158:A550.CrossRef
[18]
go back to reference Hiroshi F, Hisashi O, Takakazu H, Kiyoshi K. Influence of polystyrene/phenyl substituents in precursors on microstructures of Si–O–C composite anodes for lithium-ion batteries. J Power Sources. 2011;196(1):371.CrossRef Hiroshi F, Hisashi O, Takakazu H, Kiyoshi K. Influence of polystyrene/phenyl substituents in precursors on microstructures of Si–O–C composite anodes for lithium-ion batteries. J Power Sources. 2011;196(1):371.CrossRef
Metadata
Title
Improvement of cycle behavior of Si/Sn anode composite supported by stable Si–O–C skeleton
Authors
Jian-Tao Wang
Shi-Gang Lu
Yao Wang
Bin Huang
Juan-Yu Yang
Ao Tan
Publication date
19-09-2014
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-014-0377-1

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners