Skip to main content
Top
Published in: Rare Metals 5/2022

19-01-2022 | Review

Research progress on hot deformation behavior of high-strength β titanium alloy: flow behavior and constitutive model

Authors: Chang-Min Li, Liang Huang, Cheng-Lin Li, Song-Xiao Hui, Yang Yu, Ming-Jie Zhao, Shi-Qi Guo, Jian-Jun Li

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-strength β titanium alloys represented by near β titanium alloy and metastable β titanium alloy are preferred materials for large-scale load-carrying structures. In order to achieve the precise regulation of microstructure in the deformation process, massive efforts have been made to study the flow behavior and microstructure evolution of β titanium alloy in the hot deformation process. This paper reviews the flow behavior of high-strength titanium alloy, including the effects of initial microstructure, deformation process parameters, work hardening, and dynamic softening on flow stress. Furthermore, the effects of deformation process parameters on the apparent activation energy for deformation and strain rate sensitivity coefficient are analyzed. The discontinuous yield phenomenon is discussed, and the constitutive models of flow stress are summarized. Furthermore, some microstructural evolution models are reviewed. Finally, the development direction and difficulties of the flow behavior and constitutive model are pointed out.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.CrossRef Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.CrossRef
[2]
go back to reference Cui YM, Zheng WW, Li CH, Cao GH, Wang YD. Effectiveness of hot deformation and subsequent annealing for β grain refinement of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy. Rare Met. 2021;40(12):3608.CrossRef Cui YM, Zheng WW, Li CH, Cao GH, Wang YD. Effectiveness of hot deformation and subsequent annealing for β grain refinement of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy. Rare Met. 2021;40(12):3608.CrossRef
[3]
go back to reference Lütjering G, Williams JC. Titanium. Berlin, Heidelberg: Springer; 2007. 125. Lütjering G, Williams JC. Titanium. Berlin, Heidelberg: Springer; 2007. 125.
[4]
go back to reference Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr. Mater Sci Eng A. 2011;528(28):8277.CrossRef Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr. Mater Sci Eng A. 2011;528(28):8277.CrossRef
[5]
go back to reference Fan J, Zhang Z, Gao P, Yang R, Li H, Tang B, Kou H, Zhang Y, Esling C, Li J. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti–5Al–5Mo–5V–3Cr–05Fe with different initial microstructures. J Mater Sci Technol. 2020;38:135.CrossRef Fan J, Zhang Z, Gao P, Yang R, Li H, Tang B, Kou H, Zhang Y, Esling C, Li J. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti–5Al–5Mo–5V–3Cr–05Fe with different initial microstructures. J Mater Sci Technol. 2020;38:135.CrossRef
[6]
go back to reference Liu SF, Li MQ, Luo J, Yang Z. Deformation behavior in the isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2014;589:15.CrossRef Liu SF, Li MQ, Luo J, Yang Z. Deformation behavior in the isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2014;589:15.CrossRef
[7]
go back to reference Chen W, Lv YP, Zhang XY, Chen C, Lin YC, Zhou KC. Comparing the evolution and deformation mechanisms of lamellar and equiaxed microstructures in near β-Ti alloys during hot deformation. Mater Sci Eng A. 2019;758:71.CrossRef Chen W, Lv YP, Zhang XY, Chen C, Lin YC, Zhou KC. Comparing the evolution and deformation mechanisms of lamellar and equiaxed microstructures in near β-Ti alloys during hot deformation. Mater Sci Eng A. 2019;758:71.CrossRef
[8]
go back to reference Wang H, Xin SW, Zhao YQ, Zhou W, Zeng WD. Forging–microstructure–tensile properties correlation in a new near β high-strength titanium alloy. Rare Met. 2020;40(8):2109.CrossRef Wang H, Xin SW, Zhao YQ, Zhou W, Zeng WD. Forging–microstructure–tensile properties correlation in a new near β high-strength titanium alloy. Rare Met. 2020;40(8):2109.CrossRef
[9]
go back to reference Kolli RP, Joost WJ, Ankem S. Phase stability and stress-induced transformations in beta titanium alloys. JOM. 2015;67(6):1273.CrossRef Kolli RP, Joost WJ, Ankem S. Phase stability and stress-induced transformations in beta titanium alloys. JOM. 2015;67(6):1273.CrossRef
[10]
go back to reference Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters. J Mater Res Technol. 2020;9(6):15360.CrossRef Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters. J Mater Res Technol. 2020;9(6):15360.CrossRef
[11]
go back to reference Sarma J, Kumar R, Sahoo AK, Panda A. Enhancement of material properties of titanium alloys through heat treatment process: a brief review. Mater Today: Proc. 2020;23:561. Sarma J, Kumar R, Sahoo AK, Panda A. Enhancement of material properties of titanium alloys through heat treatment process: a brief review. Mater Today: Proc. 2020;23:561.
[12]
go back to reference Cotton JD, Briggs RD, Boyer RR, Tamirisakandala S, Russo P, Shchetnikov N, Fanning JC. State of the art in beta titanium alloys for airframe applications. JOM. 2015;67(6):1281.CrossRef Cotton JD, Briggs RD, Boyer RR, Tamirisakandala S, Russo P, Shchetnikov N, Fanning JC. State of the art in beta titanium alloys for airframe applications. JOM. 2015;67(6):1281.CrossRef
[13]
go back to reference Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136.CrossRef Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136.CrossRef
[14]
go back to reference Bania PJ. Beta titanium alloys and their role in the titanium industry. JOM. 1994;46(7):16.CrossRef Bania PJ. Beta titanium alloys and their role in the titanium industry. JOM. 1994;46(7):16.CrossRef
[15]
go back to reference Eylon D, Vassel A, Combres Y, Boyer RR, Bania PJ, Schutz RW. Issues in the development of beta titanium alloys. JOM. 1994;46(7):14.CrossRef Eylon D, Vassel A, Combres Y, Boyer RR, Bania PJ, Schutz RW. Issues in the development of beta titanium alloys. JOM. 1994;46(7):14.CrossRef
[16]
go back to reference Boyer RR, Briggs RD. The use of β titanium alloys in the aerospace industry. J Mater Eng Perform. 2005;14(6):681.CrossRef Boyer RR, Briggs RD. The use of β titanium alloys in the aerospace industry. J Mater Eng Perform. 2005;14(6):681.CrossRef
[17]
go back to reference Markovsky PE, Bondarchuk VI. Influence of strain rate, microstructure and chemical and phase composition on mechanical behavior of different titanium alloys. J Mater Eng Perform. 2017;26(7):3431.CrossRef Markovsky PE, Bondarchuk VI. Influence of strain rate, microstructure and chemical and phase composition on mechanical behavior of different titanium alloys. J Mater Eng Perform. 2017;26(7):3431.CrossRef
[18]
go back to reference Schmidt P, El-Chaikh A, Christ HJ. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti 38–644. Metall Mater Trans A. 2011;42(9):2652.CrossRef Schmidt P, El-Chaikh A, Christ HJ. Effect of duplex aging on the initiation and propagation of fatigue cracks in the solute-rich metastable β titanium alloy Ti 38–644. Metall Mater Trans A. 2011;42(9):2652.CrossRef
[19]
go back to reference Li CL, Mi XJ, Ye WJ, Hui SX, Yu Y, Wang WQ. A study on the microstructures and tensile properties of new beta high strength titanium alloy. J Alloys Compd. 2013;550:23.CrossRef Li CL, Mi XJ, Ye WJ, Hui SX, Yu Y, Wang WQ. A study on the microstructures and tensile properties of new beta high strength titanium alloy. J Alloys Compd. 2013;550:23.CrossRef
[20]
go back to reference Chou YK, Tsay LW, Chen C. Effects of aging treatments on the mechanical behavior of Ti–15V–3Cr–3Sn–3Al alloy. J Mater Eng Perform. 2015;24(9):3365.CrossRef Chou YK, Tsay LW, Chen C. Effects of aging treatments on the mechanical behavior of Ti–15V–3Cr–3Sn–3Al alloy. J Mater Eng Perform. 2015;24(9):3365.CrossRef
[21]
go back to reference Sun M, Li D, Guo Y, Wang Y, Dong Y, Dan Z, Chang H. The effect of heat treatment on the microstructure and mechanical properties of the novel low-cost Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy. Materials (Basel). 2020;13(17):3798.CrossRef Sun M, Li D, Guo Y, Wang Y, Dong Y, Dan Z, Chang H. The effect of heat treatment on the microstructure and mechanical properties of the novel low-cost Ti–3Al–5Mo–4Cr–2Zr–1Fe alloy. Materials (Basel). 2020;13(17):3798.CrossRef
[22]
go back to reference Lü ZD, Zhang CJ, Du ZX, Han JC, Zhang SZ, Yang F, Chen YY. Relationship between microstructure and tensile properties on a near-β titanium alloy after multidirectional forging and heat treatment. Rare Met. 2018;38(4):336.CrossRef Lü ZD, Zhang CJ, Du ZX, Han JC, Zhang SZ, Yang F, Chen YY. Relationship between microstructure and tensile properties on a near-β titanium alloy after multidirectional forging and heat treatment. Rare Met. 2018;38(4):336.CrossRef
[23]
go back to reference Fan JK, Li JS, Kou HC, Hua K, Tang B, Zhang YD. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti–7333. Mater Des. 2015;83:499.CrossRef Fan JK, Li JS, Kou HC, Hua K, Tang B, Zhang YD. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti–7333. Mater Des. 2015;83:499.CrossRef
[24]
go back to reference Yu M, Lin CG, Li F, Cui XF, Luo Z. Effect of heat treatment on microstructure and properties of Ti–5Mo–5V–2Cr–3Al alloy. Chin J Rare Met. 2009;33(6):790. Yu M, Lin CG, Li F, Cui XF, Luo Z. Effect of heat treatment on microstructure and properties of Ti–5Mo–5V–2Cr–3Al alloy. Chin J Rare Met. 2009;33(6):790.
[25]
go back to reference Lu JW, Zhao YQ, Ge P, Zhang YS, Niu HZ, Zhang W, Zhang PX. Precipitation behavior and tensile properties of new high strength beta titanium alloy Ti–1300. J Alloys Compd. 2015;637:1.CrossRef Lu JW, Zhao YQ, Ge P, Zhang YS, Niu HZ, Zhang W, Zhang PX. Precipitation behavior and tensile properties of new high strength beta titanium alloy Ti–1300. J Alloys Compd. 2015;637:1.CrossRef
[26]
go back to reference Ran C, Sheng ZM, Chen PW, Zhang WF, Chen Q. Effect of microstructure on the mechanical properties of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2020;773:138728.CrossRef Ran C, Sheng ZM, Chen PW, Zhang WF, Chen Q. Effect of microstructure on the mechanical properties of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2020;773:138728.CrossRef
[27]
go back to reference Zhu WG, Lei J, Tan CS, Sun QY, Chen W, Xiao L, Sun J. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: the superior combination of strength and ductility. Mater Des. 2019;168:107640.CrossRef Zhu WG, Lei J, Tan CS, Sun QY, Chen W, Xiao L, Sun J. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: the superior combination of strength and ductility. Mater Des. 2019;168:107640.CrossRef
[28]
go back to reference An Z, Li JS, Feng Y, Liu XH, Du YX. Characterization of hot deformation behavior of a new near-β titanium alloy: Ti555211. High Temp Mater Process. 2015;35(9):913.CrossRef An Z, Li JS, Feng Y, Liu XH, Du YX. Characterization of hot deformation behavior of a new near-β titanium alloy: Ti555211. High Temp Mater Process. 2015;35(9):913.CrossRef
[29]
go back to reference Wang Z, Wang XN, Zhu ZS. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. J Alloys Compd. 2017;692:149.CrossRef Wang Z, Wang XN, Zhu ZS. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. J Alloys Compd. 2017;692:149.CrossRef
[30]
go back to reference Li HM, Li MQ, Luo J, Wang K. Microstructure and mechanical properties of heat-treated Ti–5Al–2Sn–2Zr–4Mo–4Cr. Trans Nonferrous Met Soc China. 2015;25(9):2893.CrossRef Li HM, Li MQ, Luo J, Wang K. Microstructure and mechanical properties of heat-treated Ti–5Al–2Sn–2Zr–4Mo–4Cr. Trans Nonferrous Met Soc China. 2015;25(9):2893.CrossRef
[31]
go back to reference Wu C, Zhan M. Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments. J Alloys Compd. 2019;805:1144.CrossRef Wu C, Zhan M. Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments. J Alloys Compd. 2019;805:1144.CrossRef
[32]
go back to reference Alluaibi MHI, Cojocaru EM, Rusea A, Serban N, Coman G, Cojocaru VD. Microstructure and mechanical properties evolution during solution and ageing treatment for a hot deformed, above β-transus, Ti–6246 alloy. Metals. 2020;10(9):1114.CrossRef Alluaibi MHI, Cojocaru EM, Rusea A, Serban N, Coman G, Cojocaru VD. Microstructure and mechanical properties evolution during solution and ageing treatment for a hot deformed, above β-transus, Ti–6246 alloy. Metals. 2020;10(9):1114.CrossRef
[33]
go back to reference Weiss I, Semiatin SL. Thermomechanical processing of beta titanium alloys—an overview. Mater Sci Eng A. 1998;243(1–2):46.CrossRef Weiss I, Semiatin SL. Thermomechanical processing of beta titanium alloys—an overview. Mater Sci Eng A. 1998;243(1–2):46.CrossRef
[34]
go back to reference Long S, Xia YF, Hu JC, Zhang JS, Zhou J, Zhang P, Cui ML. Hot deformation behavior and microstructure evolution of Ti–6Cr–5Mo–5V–4Al alloy during hot compression. Vacuum. 2019;160:171.CrossRef Long S, Xia YF, Hu JC, Zhang JS, Zhou J, Zhang P, Cui ML. Hot deformation behavior and microstructure evolution of Ti–6Cr–5Mo–5V–4Al alloy during hot compression. Vacuum. 2019;160:171.CrossRef
[35]
go back to reference Fan XG, Zhang Y, Gao PF, Lei ZN, Zhan M. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy in beta phase field. Mater Sci Eng A. 2017;694:24.CrossRef Fan XG, Zhang Y, Gao PF, Lei ZN, Zhan M. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy in beta phase field. Mater Sci Eng A. 2017;694:24.CrossRef
[36]
go back to reference Lin YC, Pang GD, Jiang YQ, Liu XG, Zhang XY, Chen C, Zhou KC. Hot compressive deformation behavior and microstructure evolution of a Ti–55511 alloy with basket-weave microstructures. Vacuum. 2019;169:108878.CrossRef Lin YC, Pang GD, Jiang YQ, Liu XG, Zhang XY, Chen C, Zhou KC. Hot compressive deformation behavior and microstructure evolution of a Ti–55511 alloy with basket-weave microstructures. Vacuum. 2019;169:108878.CrossRef
[37]
go back to reference Zhao Q, Yang F, Torrens R, Bolzoni L. Comparison of hot deformation behaviour and microstructural evolution for Ti–5Al–5V–5Mo–3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Mater Des. 2019;169:107682.CrossRef Zhao Q, Yang F, Torrens R, Bolzoni L. Comparison of hot deformation behaviour and microstructural evolution for Ti–5Al–5V–5Mo–3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Mater Des. 2019;169:107682.CrossRef
[38]
go back to reference Luo J, Li L, Li MQ. Deformation behavior of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy with two initial microstructures during hot working. Trans Nonferrous Met Soc China. 2016;26(2):414.CrossRef Luo J, Li L, Li MQ. Deformation behavior of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy with two initial microstructures during hot working. Trans Nonferrous Met Soc China. 2016;26(2):414.CrossRef
[39]
go back to reference Fan JK, Kou HC, Lai MJ, Tang B, Chang H, Li JS. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti–7333. Mater Des. 2013;49:945.CrossRef Fan JK, Kou HC, Lai MJ, Tang B, Chang H, Li JS. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti–7333. Mater Des. 2013;49:945.CrossRef
[40]
go back to reference Wu C, Huang L. Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region. Vacuum. 2018;156:384.CrossRef Wu C, Huang L. Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region. Vacuum. 2018;156:384.CrossRef
[41]
go back to reference Lin YC, Huang J, He DG, Zhang XY, Wu Q, Wang LH, Chen C, Zhou KC. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression. J Alloys Compd. 2019;795:471.CrossRef Lin YC, Huang J, He DG, Zhang XY, Wu Q, Wang LH, Chen C, Zhou KC. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression. J Alloys Compd. 2019;795:471.CrossRef
[42]
go back to reference Hua K, Zhang YD, Gan WM, Kou HC, Beausir B, Li JS, Esling C. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy. Int J Plast. 2019;119:200.CrossRef Hua K, Zhang YD, Gan WM, Kou HC, Beausir B, Li JS, Esling C. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy. Int J Plast. 2019;119:200.CrossRef
[43]
go back to reference Li L, Li MQ, Luo J. Flow softening mechanism of Ti–5Al–2Sn–2Zr–4Mo–4Cr with different initial microstructures at elevated temperature deformation. Mater Sci Eng A. 2015;628:11.CrossRef Li L, Li MQ, Luo J. Flow softening mechanism of Ti–5Al–2Sn–2Zr–4Mo–4Cr with different initial microstructures at elevated temperature deformation. Mater Sci Eng A. 2015;628:11.CrossRef
[44]
go back to reference Jones NG, Dashwood RJ, Dye D, Jackson M. The flow behavior and microstructural evolution of Ti–5Al–5Mo–5V–3Cr during subtransus isothermal forging. Metall Mater Trans A. 2009;40(8):1944.CrossRef Jones NG, Dashwood RJ, Dye D, Jackson M. The flow behavior and microstructural evolution of Ti–5Al–5Mo–5V–3Cr during subtransus isothermal forging. Metall Mater Trans A. 2009;40(8):1944.CrossRef
[45]
go back to reference Jackson M, Jones NG, Dye D, Dashwood RJ. Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti–10V–2Fe–3Al. Mater Sci Eng A. 2009;501(1–2):248.CrossRef Jackson M, Jones NG, Dye D, Dashwood RJ. Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti–10V–2Fe–3Al. Mater Sci Eng A. 2009;501(1–2):248.CrossRef
[46]
go back to reference Li C, Zhang XY, Li ZY, Zhou KC. Hot deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloys containing thin and thick lamellar α phase. Mater Sci Eng A. 2013;573:75.CrossRef Li C, Zhang XY, Li ZY, Zhou KC. Hot deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloys containing thin and thick lamellar α phase. Mater Sci Eng A. 2013;573:75.CrossRef
[47]
go back to reference Yang QY, Ma M, Tan YB, Xiang S, Zhao F, Liang YL. Initial β grain size effect on high-temperature flow behavior of TB8 titanium alloys in single β phase field. Metals. 2019;9(8):891.CrossRef Yang QY, Ma M, Tan YB, Xiang S, Zhao F, Liang YL. Initial β grain size effect on high-temperature flow behavior of TB8 titanium alloys in single β phase field. Metals. 2019;9(8):891.CrossRef
[48]
go back to reference Zhao QY, Yang F, Torrens R, Bolzoni L. Evaluation of the hot workability and deformation mechanisms for a metastable beta titanium alloy prepared from powder. Mater Charact. 2019;149:226.CrossRef Zhao QY, Yang F, Torrens R, Bolzoni L. Evaluation of the hot workability and deformation mechanisms for a metastable beta titanium alloy prepared from powder. Mater Charact. 2019;149:226.CrossRef
[49]
go back to reference Zhao Q, Yang F, Torrens R, Bolzoni L. Comparison of the cracking behavior of powder metallurgy and ingot metallurgy Ti–5Al–5Mo–5V–3Cr alloys during hot deformation. Materials (Basel). 2019;12(3):457.CrossRef Zhao Q, Yang F, Torrens R, Bolzoni L. Comparison of the cracking behavior of powder metallurgy and ingot metallurgy Ti–5Al–5Mo–5V–3Cr alloys during hot deformation. Materials (Basel). 2019;12(3):457.CrossRef
[50]
go back to reference Quan GZ, Lv WQ, Liang JT, Pu SA, Luo GC, Liu Q. Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti–10V–2Fe–3Al alloy in a wide condition range. J Mater Process Technol. 2015;221:66.CrossRef Quan GZ, Lv WQ, Liang JT, Pu SA, Luo GC, Liu Q. Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti–10V–2Fe–3Al alloy in a wide condition range. J Mater Process Technol. 2015;221:66.CrossRef
[51]
go back to reference Balasubrahmanyam VV, Prasad YVRK. Hot deformation mechanisms in metastable beta titanium alloy Ti–10V–2Fe–3Al. Mater Sci Technol. 2013;17(10):1222.CrossRef Balasubrahmanyam VV, Prasad YVRK. Hot deformation mechanisms in metastable beta titanium alloy Ti–10V–2Fe–3Al. Mater Sci Technol. 2013;17(10):1222.CrossRef
[52]
go back to reference Lin YC, Xiao YW, Jiang YQ, Pang GD, Li HB, Zhang XY, Zhou KC. Spheroidization and dynamic recrystallization mechanisms of Ti–55511 alloy with bimodal microstructures during hot compression in α+β region. Mater Sci Eng A. 2020;782:139282.CrossRef Lin YC, Xiao YW, Jiang YQ, Pang GD, Li HB, Zhang XY, Zhou KC. Spheroidization and dynamic recrystallization mechanisms of Ti–55511 alloy with bimodal microstructures during hot compression in α+β region. Mater Sci Eng A. 2020;782:139282.CrossRef
[53]
go back to reference Wang QW, Lin YC, Jiang YQ, Liu XG, Zhang XY, Chen DD, Chen C, Zhou KC. Precipitation behavior of a β-quenched Ti–5Al–5Mo–5V–1Cr–1Fe alloy during high-temperature compression. Mater Charact. 2019;151:358.CrossRef Wang QW, Lin YC, Jiang YQ, Liu XG, Zhang XY, Chen DD, Chen C, Zhou KC. Precipitation behavior of a β-quenched Ti–5Al–5Mo–5V–1Cr–1Fe alloy during high-temperature compression. Mater Charact. 2019;151:358.CrossRef
[54]
go back to reference Luo J, Liu SF, Li MQ. Quantitative analysis of microstructure and deformation mechanisms during isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Charact. 2015;108:115.CrossRef Luo J, Liu SF, Li MQ. Quantitative analysis of microstructure and deformation mechanisms during isothermal compression of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Charact. 2015;108:115.CrossRef
[55]
go back to reference Mitchell TE, Hirth JP, Misra A. Apparent activation energy and stress exponent in materials with a high Peierls stress. Acta Mater. 2002;50(5):1087.CrossRef Mitchell TE, Hirth JP, Misra A. Apparent activation energy and stress exponent in materials with a high Peierls stress. Acta Mater. 2002;50(5):1087.CrossRef
[56]
go back to reference Wu C, Huang L, Li CM. Experimental investigation on dynamic phase transformation and texture evolution of Ti55531 high strength titanium alloy during hot compression in the α+β region. Mater Sci Eng A. 2020;773:138851.CrossRef Wu C, Huang L, Li CM. Experimental investigation on dynamic phase transformation and texture evolution of Ti55531 high strength titanium alloy during hot compression in the α+β region. Mater Sci Eng A. 2020;773:138851.CrossRef
[57]
go back to reference Warchomicka F, Stockinger M, Degischer HP. Quantitative analysis of the microstructure of near β titanium alloy during compression tests. J Mater Process Technol. 2006;177(1–3):473.CrossRef Warchomicka F, Stockinger M, Degischer HP. Quantitative analysis of the microstructure of near β titanium alloy during compression tests. J Mater Process Technol. 2006;177(1–3):473.CrossRef
[58]
go back to reference Wang Z, Wang XN, Shang GQ, Zhi LW, Li J, Fei Y, Tian S, Zhu ZS. Hot deformation behavior of new high strength and toughness titanium alloy. Rare Met Mater Eng. 2018;47(3):810. Wang Z, Wang XN, Shang GQ, Zhi LW, Li J, Fei Y, Tian S, Zhu ZS. Hot deformation behavior of new high strength and toughness titanium alloy. Rare Met Mater Eng. 2018;47(3):810.
[59]
go back to reference Liang HQ, Guo HZ, Ning YQ, Peng XN, Qin C, Shi ZF, Nan Y. Dynamic recrystallization behavior of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Des. 2014;63:798.CrossRef Liang HQ, Guo HZ, Ning YQ, Peng XN, Qin C, Shi ZF, Nan Y. Dynamic recrystallization behavior of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Des. 2014;63:798.CrossRef
[60]
go back to reference Abbasi SM, Momeni A, Lin YC, Jafarian HR. Dynamic softening mechanism in Ti–13V–11Cr–3Al beta Ti alloy during hot compressive deformation. Mater Sci Eng A. 2016;665:154.CrossRef Abbasi SM, Momeni A, Lin YC, Jafarian HR. Dynamic softening mechanism in Ti–13V–11Cr–3Al beta Ti alloy during hot compressive deformation. Mater Sci Eng A. 2016;665:154.CrossRef
[61]
go back to reference Lin YC, Huang J, Li HB, Chen DD. Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α+β regime. Vacuum. 2018;157:83.CrossRef Lin YC, Huang J, Li HB, Chen DD. Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α+β regime. Vacuum. 2018;157:83.CrossRef
[62]
go back to reference Yang QY, Ma M, Tan YB, Xiang S, Zhao F, Liang YL. Microstructure and texture evolution of TB8 titanium alloys during hot compression. Rare Met. 2021;40(10):2917.CrossRef Yang QY, Ma M, Tan YB, Xiang S, Zhao F, Liang YL. Microstructure and texture evolution of TB8 titanium alloys during hot compression. Rare Met. 2021;40(10):2917.CrossRef
[63]
go back to reference Nan Y, Ning YQ, Liang HQ, Guo HZ, Yao ZK, Fu MW. Work-hardening effect and strain-rate sensitivity behavior during hot deformation of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Des. 2015;82:84.CrossRef Nan Y, Ning YQ, Liang HQ, Guo HZ, Yao ZK, Fu MW. Work-hardening effect and strain-rate sensitivity behavior during hot deformation of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Des. 2015;82:84.CrossRef
[64]
go back to reference McQueen HJ, Yue S, Ryan ND, Fry E. Hot working characteristics of steels in austenitic state. J Mater Process Technol. 1995;53(1):293.CrossRef McQueen HJ, Yue S, Ryan ND, Fry E. Hot working characteristics of steels in austenitic state. J Mater Process Technol. 1995;53(1):293.CrossRef
[65]
go back to reference Poliak EI, Jonas JJ. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996;44(1):127.CrossRef Poliak EI, Jonas JJ. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996;44(1):127.CrossRef
[66]
go back to reference Qu FS, Zhou YH, Zhang LY, Wang ZH, Zhou J. Research on hot deformation behavior of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Des. 2015;69:153.CrossRef Qu FS, Zhou YH, Zhang LY, Wang ZH, Zhou J. Research on hot deformation behavior of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Des. 2015;69:153.CrossRef
[67]
go back to reference Ning YQ, Xie BC, Liang HQ, Li H, Yang XM, Guo HZ. Dynamic softening behavior of TC18 titanium alloy during hot deformation. Mater Des. 2015;71:68.CrossRef Ning YQ, Xie BC, Liang HQ, Li H, Yang XM, Guo HZ. Dynamic softening behavior of TC18 titanium alloy during hot deformation. Mater Des. 2015;71:68.CrossRef
[68]
go back to reference Tan K, Li J, Guan ZJ, Yang JB, Shu JX. The identification of dynamic recrystallization and constitutive modeling during hot deformation of Ti55511 titanium alloy. Mater Des. 2015;84:204.CrossRef Tan K, Li J, Guan ZJ, Yang JB, Shu JX. The identification of dynamic recrystallization and constitutive modeling during hot deformation of Ti55511 titanium alloy. Mater Des. 2015;84:204.CrossRef
[69]
go back to reference Liang HQ, Guo HZ, Nan Y, Qin C, Peng XN, Zhang JL. The construction of constitutive model and identification of dynamic softening mechanism of high-temperature deformation of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2014;615:42.CrossRef Liang HQ, Guo HZ, Nan Y, Qin C, Peng XN, Zhang JL. The construction of constitutive model and identification of dynamic softening mechanism of high-temperature deformation of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater Sci Eng A. 2014;615:42.CrossRef
[70]
go back to reference Thlrukkonda M, Srinlvasan R, Weiss I. Instability and flow localization during compression of a flow softening material. J Mater Eng Perform. 1994;3(4):514.CrossRef Thlrukkonda M, Srinlvasan R, Weiss I. Instability and flow localization during compression of a flow softening material. J Mater Eng Perform. 1994;3(4):514.CrossRef
[71]
go back to reference Li C, Zhang XY, Zhou KC, Peng CQ. Relationship between lamellar α evolution and flow behavior during isothermal deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng A. 2012;558:668.CrossRef Li C, Zhang XY, Zhou KC, Peng CQ. Relationship between lamellar α evolution and flow behavior during isothermal deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng A. 2012;558:668.CrossRef
[72]
go back to reference Gao PF, Fu MW, Zhan M, Lei ZN, Li YX. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review. J Mater Sci Technol. 2020;39:56.CrossRef Gao PF, Fu MW, Zhan M, Lei ZN, Li YX. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review. J Mater Sci Technol. 2020;39:56.CrossRef
[73]
go back to reference Matsumoto H, Kitamura M, Li Y, Koizumi Y, Chiba A. Hot forging characteristic of Ti–5Al–5V–5Mo–3Cr alloy with single metastable β microstructure. Mater Sci Eng A. 2014;611:337.CrossRef Matsumoto H, Kitamura M, Li Y, Koizumi Y, Chiba A. Hot forging characteristic of Ti–5Al–5V–5Mo–3Cr alloy with single metastable β microstructure. Mater Sci Eng A. 2014;611:337.CrossRef
[74]
go back to reference Chang LL, Zheng LW. Isothermal compression behavior and constitutive modeling of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Trans Nonferrous Met Soc China. 2018;28(6):1114.CrossRef Chang LL, Zheng LW. Isothermal compression behavior and constitutive modeling of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Trans Nonferrous Met Soc China. 2018;28(6):1114.CrossRef
[75]
go back to reference Sun JZ, Li MQ, Li H. Initial flow softening and restoration mechanisms of isothermally compressed Ti–5Al–2Sn–2Zr–4Mo–4Cr with basketweave microstructure. Mater Sci Eng A. 2017;697:132.CrossRef Sun JZ, Li MQ, Li H. Initial flow softening and restoration mechanisms of isothermally compressed Ti–5Al–2Sn–2Zr–4Mo–4Cr with basketweave microstructure. Mater Sci Eng A. 2017;697:132.CrossRef
[76]
go back to reference Zhang JQ, Di HS, Wang HT, Mao K, Ma TJ, Cao Y. Hot deformation behavior of Ti–15–3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. J Mater Sci. 2012;47(9):4000.CrossRef Zhang JQ, Di HS, Wang HT, Mao K, Ma TJ, Cao Y. Hot deformation behavior of Ti–15–3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. J Mater Sci. 2012;47(9):4000.CrossRef
[77]
go back to reference Zhang JQ, Di HS. Deformation heating and flow localization in Ti–15–3 metastable β titanium alloy subjected to high Z deformation. Mater Sci Eng A. 2016;676:506.CrossRef Zhang JQ, Di HS. Deformation heating and flow localization in Ti–15–3 metastable β titanium alloy subjected to high Z deformation. Mater Sci Eng A. 2016;676:506.CrossRef
[78]
go back to reference Zhao HZ, Xiao L, Ge P, Sun J, Xi ZP. Hot deformation behavior and processing maps of Ti–1300 alloy. Mater Sci Eng A. 2014;604:111.CrossRef Zhao HZ, Xiao L, Ge P, Sun J, Xi ZP. Hot deformation behavior and processing maps of Ti–1300 alloy. Mater Sci Eng A. 2014;604:111.CrossRef
[79]
go back to reference Li MQ, Pan HS, Lin YY, Luo J. High temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloy. J Mater Process Technol. 2007;183(1):71.CrossRef Li MQ, Pan HS, Lin YY, Luo J. High temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloy. J Mater Process Technol. 2007;183(1):71.CrossRef
[80]
go back to reference Bao RQ, Huang X, Cao CX. Deformation behavior and mechanisms of Ti–1023 alloy. Trans Nonferrous Met Soc China. 2006;16(2):274.CrossRef Bao RQ, Huang X, Cao CX. Deformation behavior and mechanisms of Ti–1023 alloy. Trans Nonferrous Met Soc China. 2006;16(2):274.CrossRef
[81]
go back to reference Zhao ZL, Guo HZ, Wang XC, Yao ZK. Deformation behavior of isothermally forged Ti–5Al–2Sn–2Zr–4Mo–4Cr powder compact. J Mater Process Technol. 2009;209(15–16):5509.CrossRef Zhao ZL, Guo HZ, Wang XC, Yao ZK. Deformation behavior of isothermally forged Ti–5Al–2Sn–2Zr–4Mo–4Cr powder compact. J Mater Process Technol. 2009;209(15–16):5509.CrossRef
[82]
go back to reference Xu X, Dong LM, Ba HB, Zhang ZQ, Yang R. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field. Trans Nonferrous Met Soc China. 2016;26(11):2874.CrossRef Xu X, Dong LM, Ba HB, Zhang ZQ, Yang R. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field. Trans Nonferrous Met Soc China. 2016;26(11):2874.CrossRef
[83]
go back to reference Wu J, Lü ZD, Zhang CJ, Han JC, Zhang HZ, Zhang SZ, Hayat M, Cao P. Investigation of the deformation mechanism of a near β titanium alloy through isothermal compression. Metals. 2017;7(11):498.CrossRef Wu J, Lü ZD, Zhang CJ, Han JC, Zhang HZ, Zhang SZ, Hayat M, Cao P. Investigation of the deformation mechanism of a near β titanium alloy through isothermal compression. Metals. 2017;7(11):498.CrossRef
[84]
go back to reference Deng CY, Dong SJ, Tan W. Modelling for the flow behavior of a new metastable beta titanium alloy by GA-based Arrhenius equation. Mater Res Express. 2018;6(2):026544.CrossRef Deng CY, Dong SJ, Tan W. Modelling for the flow behavior of a new metastable beta titanium alloy by GA-based Arrhenius equation. Mater Res Express. 2018;6(2):026544.CrossRef
[85]
go back to reference Long S, Xia YF, Wang P, Zhou YT, Gongye FJ, Zhou J, Zhang JS, Cui ML. Constitutive modelling, dynamic globularization behavior and processing map for Ti–6Cr–5Mo–5V–4Al alloy during hot deformation. J Alloys Compd. 2019;796:65.CrossRef Long S, Xia YF, Wang P, Zhou YT, Gongye FJ, Zhou J, Zhang JS, Cui ML. Constitutive modelling, dynamic globularization behavior and processing map for Ti–6Cr–5Mo–5V–4Al alloy during hot deformation. J Alloys Compd. 2019;796:65.CrossRef
[86]
go back to reference Li L, Li MQ. Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps. Mater Sci Eng A. 2017;698:302.CrossRef Li L, Li MQ. Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps. Mater Sci Eng A. 2017;698:302.CrossRef
[87]
go back to reference Sun JZ, Li MQ, Li H. Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression. J Alloys Compd. 2018;730:533.CrossRef Sun JZ, Li MQ, Li H. Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression. J Alloys Compd. 2018;730:533.CrossRef
[88]
go back to reference Abbasi SM, Momeni A, Akhondzadeh A, Ghazi Mirsaed SM. Microstructure and mechanical behavior of hot compressed Ti–6V–6Mo–6Fe–3Al. Mater Sci Eng A. 2015;639:21.CrossRef Abbasi SM, Momeni A, Akhondzadeh A, Ghazi Mirsaed SM. Microstructure and mechanical behavior of hot compressed Ti–6V–6Mo–6Fe–3Al. Mater Sci Eng A. 2015;639:21.CrossRef
[89]
go back to reference Abbasi SM, Morakkabati M, Sheikhali AH, Momeni A. Hot deformation behavior of beta titanium Ti–13V–11Cr–3Al alloy. Metall Mater Trans A. 2014;45(11):5201.CrossRef Abbasi SM, Morakkabati M, Sheikhali AH, Momeni A. Hot deformation behavior of beta titanium Ti–13V–11Cr–3Al alloy. Metall Mater Trans A. 2014;45(11):5201.CrossRef
[90]
go back to reference Li CM, Huang L, Zhao MJ, Guo SQ, Li JJ. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti–6Cr–5Mo–5V–4Al in single phase region. Mater Sci Eng A. 2021;814:141231.CrossRef Li CM, Huang L, Zhao MJ, Guo SQ, Li JJ. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti–6Cr–5Mo–5V–4Al in single phase region. Mater Sci Eng A. 2021;814:141231.CrossRef
[91]
go back to reference McPhie MG, Berbenni S, Cherkaoui M. Activation energy for nucleation of partial dislocation from grain boundaries. Comput Mater Sci. 2012;62:169.CrossRef McPhie MG, Berbenni S, Cherkaoui M. Activation energy for nucleation of partial dislocation from grain boundaries. Comput Mater Sci. 2012;62:169.CrossRef
[92]
go back to reference Kim JS, Kim JH, Lee YT, Park CG, Lee CS. Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy. Mater Sci Eng A. 1999;263(2):272.CrossRef Kim JS, Kim JH, Lee YT, Park CG, Lee CS. Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy. Mater Sci Eng A. 1999;263(2):272.CrossRef
[93]
go back to reference Liang HQ, Nan Y, Ning YQ, Li H, Zhang JL, Shi ZF, Guo HZ. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing. J Alloys Compd. 2015;632:478.CrossRef Liang HQ, Nan Y, Ning YQ, Li H, Zhang JL, Shi ZF, Guo HZ. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing. J Alloys Compd. 2015;632:478.CrossRef
[94]
go back to reference Quan GZ, Ku T, Song W, Kang B. The workability evaluation of wrought AZ80 magnesium alloy in hot compression. Mater Des. 2011;32(4):2462.CrossRef Quan GZ, Ku T, Song W, Kang B. The workability evaluation of wrought AZ80 magnesium alloy in hot compression. Mater Des. 2011;32(4):2462.CrossRef
[95]
go back to reference Luo J, Wang LF, Liu SF, Li MQ. The correlation between the flow behavior and the microstructure evolution during hot working of TC18 alloy. Mater Sci Eng A. 2016;654:213.CrossRef Luo J, Wang LF, Liu SF, Li MQ. The correlation between the flow behavior and the microstructure evolution during hot working of TC18 alloy. Mater Sci Eng A. 2016;654:213.CrossRef
[96]
go back to reference Anil Kumar V, Murty SVSN, Gupta RK, Rao AG, Prasad MJNV. Effect of boron on microstructure evolution and hot tensile deformation behavior of Ti–5Al–5V–5Mo–1Cr–1Fe alloy. J Alloys Compd. 2020;831:154672.CrossRef Anil Kumar V, Murty SVSN, Gupta RK, Rao AG, Prasad MJNV. Effect of boron on microstructure evolution and hot tensile deformation behavior of Ti–5Al–5V–5Mo–1Cr–1Fe alloy. J Alloys Compd. 2020;831:154672.CrossRef
[97]
go back to reference Nie XA, Hu Z, Liu HQ, Yi DQ, Chen TY, Wang BF, Gao Q, Wang DC. High temperature deformation and creep behavior of Ti–5Al–5Mo–5V–1Fe–1Cr alloy. Mater Sci Eng A. 2014;613:306.CrossRef Nie XA, Hu Z, Liu HQ, Yi DQ, Chen TY, Wang BF, Gao Q, Wang DC. High temperature deformation and creep behavior of Ti–5Al–5Mo–5V–1Fe–1Cr alloy. Mater Sci Eng A. 2014;613:306.CrossRef
[98]
go back to reference Wang K, Li MQ. Characterization of discontinuous yielding phenomenon in isothermal compression of TC8 titanium alloy. Trans Nonferrous Met Soc China. 2016;26(6):1583.CrossRef Wang K, Li MQ. Characterization of discontinuous yielding phenomenon in isothermal compression of TC8 titanium alloy. Trans Nonferrous Met Soc China. 2016;26(6):1583.CrossRef
[99]
go back to reference Hua K, Wan Q, Kou HC, Zhang F, Zhang YL, Li JS. The interplay relationship between phase transformation and deformation behavior during hot compression in a metastable β titanium alloy. Mater Des. 2021;197:109275.CrossRef Hua K, Wan Q, Kou HC, Zhang F, Zhang YL, Li JS. The interplay relationship between phase transformation and deformation behavior during hot compression in a metastable β titanium alloy. Mater Des. 2021;197:109275.CrossRef
[100]
go back to reference Qu WT, Sun XG, Hui SX, Wang ZG, Li Y. High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Met. 2018;37(3):217.CrossRef Qu WT, Sun XG, Hui SX, Wang ZG, Li Y. High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Met. 2018;37(3):217.CrossRef
[101]
go back to reference Shouwu G, Leina Z. A comparison study at the flow stress prediction of Ti–5Al–5Mo–5V–3Cr–1Zr alloy based on BP-ANN and Arrhenius model. Mater Res Express. 2018;5(6):066505.CrossRef Shouwu G, Leina Z. A comparison study at the flow stress prediction of Ti–5Al–5Mo–5V–3Cr–1Zr alloy based on BP-ANN and Arrhenius model. Mater Res Express. 2018;5(6):066505.CrossRef
[102]
go back to reference Liu JL, Zeng WD, Lai YJ, Jia ZQ. Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis. Mater Sci Eng A. 2014;597:387.CrossRef Liu JL, Zeng WD, Lai YJ, Jia ZQ. Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis. Mater Sci Eng A. 2014;597:387.CrossRef
[103]
go back to reference Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Seventh international symposium on ballistics, the Hague, the Netherlands. 1983;21. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Seventh international symposium on ballistics, the Hague, the Netherlands. 1983;21.
[104]
go back to reference Lin YC, Chen XM, Liu G. A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng A. 2010;527(26):6980.CrossRef Lin YC, Chen XM, Liu G. A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng A. 2010;527(26):6980.CrossRef
[105]
go back to reference Long S, Zhou J, Qiu ZL, Zhou YT, Li SS. A GA-optimized Johnson–Cook model of flow behavior for Ti–6554 alloy in cross-phase temperature range. Mater Res Express. 2019;6(10):106546.CrossRef Long S, Zhou J, Qiu ZL, Zhou YT, Li SS. A GA-optimized Johnson–Cook model of flow behavior for Ti–6554 alloy in cross-phase temperature range. Mater Res Express. 2019;6(10):106546.CrossRef
[106]
go back to reference Liang H, Guo H, Ning YQ, Zekun Y, Zhao Z. Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism. Acta Metall Sin. 2014;50:871. Liang H, Guo H, Ning YQ, Zekun Y, Zhao Z. Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism. Acta Metall Sin. 2014;50:871.
[107]
go back to reference Wang ZJ, Qiang HF, Wang XR, Wang G. Constitutive model for a new kind of metastable β titanium alloy during hot deformation. Trans Nonferrous Met Soc China. 2012;22(3):634.CrossRef Wang ZJ, Qiang HF, Wang XR, Wang G. Constitutive model for a new kind of metastable β titanium alloy during hot deformation. Trans Nonferrous Met Soc China. 2012;22(3):634.CrossRef
[108]
go back to reference Luo J, Li MQ, Li XL, Shi YP. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.CrossRef Luo J, Li MQ, Li XL, Shi YP. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.CrossRef
[109]
go back to reference Wang YH, Han FB, Kou HC, Li JS. Internal-Atate-variable based constitutive modeling for near β Ti–7Mo–3Al–3Nb–3Cr alloy during hot deformation process. Rare Met Mater Eng. 2015;44(8):1883.CrossRef Wang YH, Han FB, Kou HC, Li JS. Internal-Atate-variable based constitutive modeling for near β Ti–7Mo–3Al–3Nb–3Cr alloy during hot deformation process. Rare Met Mater Eng. 2015;44(8):1883.CrossRef
[110]
go back to reference Xiao YW, Lin YC, Jiang YQ, Zhang XY, Pang GD, Wang D, Zhou KC. A dislocation density-based model and processing maps of Ti–55511 alloy with bimodal microstructures during hot compression in α+β region. Mater Sci Eng A. 2020;790:139692.CrossRef Xiao YW, Lin YC, Jiang YQ, Zhang XY, Pang GD, Wang D, Zhou KC. A dislocation density-based model and processing maps of Ti–55511 alloy with bimodal microstructures during hot compression in α+β region. Mater Sci Eng A. 2020;790:139692.CrossRef
[111]
go back to reference Buzolin RH, Lasnik M, Krumphals A, Poletti MC. A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy. Int J Plast. 2021;136:102862.CrossRef Buzolin RH, Lasnik M, Krumphals A, Poletti MC. A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy. Int J Plast. 2021;136:102862.CrossRef
[112]
go back to reference Gangi Setti S, Rao RN. Artificial neural network approach for prediction of stress–strain curve of near β titanium alloy. Rare Met. 2013;33(3):249.CrossRef Gangi Setti S, Rao RN. Artificial neural network approach for prediction of stress–strain curve of near β titanium alloy. Rare Met. 2013;33(3):249.CrossRef
[113]
go back to reference Sc M, Wj A. Recrystallization and grain growth in hot rolling. Met Sci Heat Treat. 1979;13(3):187. Sc M, Wj A. Recrystallization and grain growth in hot rolling. Met Sci Heat Treat. 1979;13(3):187.
[114]
go back to reference Lv YP, Li SJ, Zhang XY, Li ZY, Zhou KC. Modeling and finite element analysis for the dynamic recrystallization behavior of Ti–5Al–5Mo–5V–3Cr–1Zr near β titanium alloy during hot deformation. High Temp Mater Process. 2018;37(5):445.CrossRef Lv YP, Li SJ, Zhang XY, Li ZY, Zhou KC. Modeling and finite element analysis for the dynamic recrystallization behavior of Ti–5Al–5Mo–5V–3Cr–1Zr near β titanium alloy during hot deformation. High Temp Mater Process. 2018;37(5):445.CrossRef
[115]
go back to reference Song HW, Zhang SH, Cheng M. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure. J Alloys Compd. 2009;480(2):922.CrossRef Song HW, Zhang SH, Cheng M. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure. J Alloys Compd. 2009;480(2):922.CrossRef
[116]
go back to reference Liu J, Cui ZS, Ruan LQ. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater Sci Eng A. 2011;529:300.CrossRef Liu J, Cui ZS, Ruan LQ. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater Sci Eng A. 2011;529:300.CrossRef
[117]
go back to reference Liu YG, Li MQ, Luo J. The modelling of dynamic recrystallization in the isothermal compression of 300M steel. Mater Sci Eng A. 2013;574:1.CrossRef Liu YG, Li MQ, Luo J. The modelling of dynamic recrystallization in the isothermal compression of 300M steel. Mater Sci Eng A. 2013;574:1.CrossRef
[118]
go back to reference Yada H, Senuma T. Resistance to hot deformation of steels. J Jpn Soc Technol Plast. 1986;27(300):34. Yada H, Senuma T. Resistance to hot deformation of steels. J Jpn Soc Technol Plast. 1986;27(300):34.
[119]
go back to reference OuYang DL, Fu MW, Lu SQ. Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater Sci Eng A. 2014;619:26.CrossRef OuYang DL, Fu MW, Lu SQ. Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation. Mater Sci Eng A. 2014;619:26.CrossRef
[120]
go back to reference Wang KX, Zeng WD, Zhao YQ, Lai YJ, Zhou YG. Dynamic globularization kinetics during hot working of Ti–17 alloy with initial lamellar microstructure. Mater Sci Eng A. 2010;527(10–11):2559.CrossRef Wang KX, Zeng WD, Zhao YQ, Lai YJ, Zhou YG. Dynamic globularization kinetics during hot working of Ti–17 alloy with initial lamellar microstructure. Mater Sci Eng A. 2010;527(10–11):2559.CrossRef
[121]
go back to reference Wang KX, Zeng WD, Zhao YQ, Shao YT, Zhou YG. Prediction of dynamic globularization of Ti–17 titanium alloy with initial lamellar microstructure during hot compression. Mater Sci Eng A. 2010;527(23):6193.CrossRef Wang KX, Zeng WD, Zhao YQ, Shao YT, Zhou YG. Prediction of dynamic globularization of Ti–17 titanium alloy with initial lamellar microstructure during hot compression. Mater Sci Eng A. 2010;527(23):6193.CrossRef
[122]
go back to reference Li P, Xue KM, Lu Y, Tan JR. Prediction and simulation of microstructure of Ti–15–3 alloy. J Mater Sci Technol. 2003;19:161. Li P, Xue KM, Lu Y, Tan JR. Prediction and simulation of microstructure of Ti–15–3 alloy. J Mater Sci Technol. 2003;19:161.
[123]
go back to reference Li P, Xue KM, Lu Y, Tan JR. Influence and prediction of hot deformation parameters on microstructure of Ti–15–3 alloy. Trans Nonferrous Met Soc China. 2002;12(3):454. Li P, Xue KM, Lu Y, Tan JR. Influence and prediction of hot deformation parameters on microstructure of Ti–15–3 alloy. Trans Nonferrous Met Soc China. 2002;12(3):454.
[124]
go back to reference Ouyang DL, Lu SQ, Cui X, Wu C, Li X. Modeling of grain growth for dynamic recrystallization of TA15 titanium alloy. Rare Met Mater Eng. 2010;39(7):1162. Ouyang DL, Lu SQ, Cui X, Wu C, Li X. Modeling of grain growth for dynamic recrystallization of TA15 titanium alloy. Rare Met Mater Eng. 2010;39(7):1162.
[125]
go back to reference Li L, Li MQ. Grain size model for continuous dynamic recrystallization of titanium alloy in hot deformation. Sci China Technol Sc. 2018;61(11):1688.CrossRef Li L, Li MQ. Grain size model for continuous dynamic recrystallization of titanium alloy in hot deformation. Sci China Technol Sc. 2018;61(11):1688.CrossRef
Metadata
Title
Research progress on hot deformation behavior of high-strength β titanium alloy: flow behavior and constitutive model
Authors
Chang-Min Li
Liang Huang
Cheng-Lin Li
Song-Xiao Hui
Yang Yu
Ming-Jie Zhao
Shi-Qi Guo
Jian-Jun Li
Publication date
19-01-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01861-7

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners