Skip to main content
Top
Published in: Polymer Bulletin 12/2018

07-05-2018 | Original Paper

Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications

Authors: Priyanka Dhatarwal, R. J. Sengwa

Published in: Polymer Bulletin | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Classical solution-cast and ultrasonic–microwave-irradiated solution-cast methods have been used for the preparation of solid polymer electrolyte (SPE) films comprising polymer matrix of poly(ethylene oxide) and poly(methyl methacrylate) blend and lithium tetrafluoroborate (LiBF4) ionic salt. These films have been characterized by employing the X-ray diffraction, Fourier transform infrared spectroscopy, dielectric relaxation spectroscopy, and electrochemical analyser. It is observed that the temperature-dependent ionic conductivity of these predominantly amorphous solid ion–dipolar complexes is governed by their dielectric permittivity and the relaxation times of various dynamical processes. The relaxation times and the dc ionic conductivity of these electrolyte materials obey the Arrhenius behaviour, whereas the normalized ac conductivity exhibits the time–temperature superposition scaling. The influence of sample preparation methods on the performance of SPE films and the suitability of these materials for the lithium-ion batteries has been explored by noting the relative changes in their structural, dielectric, electrical, ionic conductivity, and the electrochemical parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Che L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164CrossRef Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Che L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164CrossRef
2.
go back to reference Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002CrossRef Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002CrossRef
3.
go back to reference Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540CrossRef Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540CrossRef
4.
go back to reference Xue Z, He D, Xie X (2015) Poly(ethylene oxide)–based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253CrossRef Xue Z, He D, Xie X (2015) Poly(ethylene oxide)–based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253CrossRef
5.
go back to reference Dam T, Tripathy SN, Paluch M, Jena SS, Pradhan DK (2016) Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20–LiCF3SO3–ZrO2 based polymer nano-composite electrolyte. Electrochim Acta 202:147–156CrossRef Dam T, Tripathy SN, Paluch M, Jena SS, Pradhan DK (2016) Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20–LiCF3SO3–ZrO2 based polymer nano-composite electrolyte. Electrochim Acta 202:147–156CrossRef
6.
go back to reference Karmakar A, Ghosh A (2014) Structure and ionic conductivity of ionic liquid embedded PEO–LiCF3SO3 polymer electrolyte. AIP Adv 4:087112CrossRef Karmakar A, Ghosh A (2014) Structure and ionic conductivity of ionic liquid embedded PEO–LiCF3SO3 polymer electrolyte. AIP Adv 4:087112CrossRef
7.
go back to reference Das S, Ghosh A (2015) Ion conduction and relaxation in PEO–LiTFSI–Al2O3 polymer nanocomposite electrolytes. J Appl Phys 117:174103CrossRef Das S, Ghosh A (2015) Ion conduction and relaxation in PEO–LiTFSI–Al2O3 polymer nanocomposite electrolytes. J Appl Phys 117:174103CrossRef
8.
go back to reference Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef
9.
go back to reference Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75:765–774CrossRef Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75:765–774CrossRef
10.
go back to reference Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142:172–181CrossRef Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142:172–181CrossRef
11.
go back to reference Sengwa RJ, Choudhary S (2014) Dielectric relaxation spectroscopy and X–ray diffraction studies of poly(ethylene oxide)–lithium perchlorate electrolytes. Indian J Phys 88:461–470CrossRef Sengwa RJ, Choudhary S (2014) Dielectric relaxation spectroscopy and X–ray diffraction studies of poly(ethylene oxide)–lithium perchlorate electrolytes. Indian J Phys 88:461–470CrossRef
12.
go back to reference Polu AR, Rhee H-W, Kim DK (2015) New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci: Mater Electron 26:8548–8554 Polu AR, Rhee H-W, Kim DK (2015) New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci: Mater Electron 26:8548–8554
13.
go back to reference Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228CrossRef Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228CrossRef
14.
go back to reference Choudhary S, Sengwa RJ (2012) Effects of different anions of lithium salt and MMT nanofiller on ion conduction in melt compounded PEO–LiX–MMT electrolytes. Ionics 18:379–384CrossRef Choudhary S, Sengwa RJ (2012) Effects of different anions of lithium salt and MMT nanofiller on ion conduction in melt compounded PEO–LiX–MMT electrolytes. Ionics 18:379–384CrossRef
15.
go back to reference Deka M, Kumar A (2013) Dielectric and conductivity studies of 90 MeV O7+ ion irradiated poly(ethylene oxide)/montmorillonite based ion conductor. J Solid State Electrochem 17:977–986CrossRef Deka M, Kumar A (2013) Dielectric and conductivity studies of 90 MeV O7+ ion irradiated poly(ethylene oxide)/montmorillonite based ion conductor. J Solid State Electrochem 17:977–986CrossRef
16.
go back to reference Pradhan DK, Karan NK, Thomas R, Katiyar RS (2014) Coupling of conductivity to the relaxation process in polymer electrolytes. Mater Chem Phys 147:1016–1021CrossRef Pradhan DK, Karan NK, Thomas R, Katiyar RS (2014) Coupling of conductivity to the relaxation process in polymer electrolytes. Mater Chem Phys 147:1016–1021CrossRef
17.
go back to reference Pal P, Ghosh A (2017) Charge carrier dynamics in PMMA–LiClO4 based polymer electrolytes plasticized with different plasticizers. J Appl Phys 122:015101CrossRef Pal P, Ghosh A (2017) Charge carrier dynamics in PMMA–LiClO4 based polymer electrolytes plasticized with different plasticizers. J Appl Phys 122:015101CrossRef
18.
go back to reference Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA–LiClO4. Ionics 15:357–367CrossRef Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA–LiClO4. Ionics 15:357–367CrossRef
19.
go back to reference Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA–LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167CrossRef Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA–LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167CrossRef
20.
go back to reference Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 16:255–262CrossRef Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2. Ionics 16:255–262CrossRef
21.
go back to reference Liu J, Sakai VG, Maranas JK (2006) Composition dependence of segmental dynamics of poly(methyl methacrylate) in miscible blends with poly(ethylene oxide). Macromolecules 39:2866–2874CrossRef Liu J, Sakai VG, Maranas JK (2006) Composition dependence of segmental dynamics of poly(methyl methacrylate) in miscible blends with poly(ethylene oxide). Macromolecules 39:2866–2874CrossRef
22.
go back to reference Chen C, Maranas JK (2009) A molecular view of dynamic responses when mixing poly(ethylene oxide) and poly(methyl methacrylate). Macromolecules 42:2795–2805CrossRef Chen C, Maranas JK (2009) A molecular view of dynamic responses when mixing poly(ethylene oxide) and poly(methyl methacrylate). Macromolecules 42:2795–2805CrossRef
23.
go back to reference Shi W, Han CC (2012) Dynamic competition between crystallization and phase separation at the growth interface of a PMMA/PEO blend. Macromolecules 45:336–346CrossRef Shi W, Han CC (2012) Dynamic competition between crystallization and phase separation at the growth interface of a PMMA/PEO blend. Macromolecules 45:336–346CrossRef
24.
go back to reference Karim SRA, Sim LH, Chan CH, Ramli H (2015) On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol Symp 354:374–383CrossRef Karim SRA, Sim LH, Chan CH, Ramli H (2015) On thermal and spectroscopic studies of poly(ethylene oxide)/poly(methyl methacrylate) blends with lithium perchlorate. Macromol Symp 354:374–383CrossRef
25.
go back to reference Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO–PMMA polymer composite electrolytes doped with nano–Al2O3. Electrochim Acta 169:334–341CrossRef Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO–PMMA polymer composite electrolytes doped with nano–Al2O3. Electrochim Acta 169:334–341CrossRef
26.
go back to reference Ghellichi M, Qazvini NT, Jafari SH, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874CrossRef Ghellichi M, Qazvini NT, Jafari SH, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129:1868–1874CrossRef
27.
go back to reference Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24:135CrossRef Dhatarwal P, Sengwa RJ (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24:135CrossRef
28.
go back to reference Dhatarwal P, Sengwa RJ, Choudhary S (2017) Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Comp Comm 5:1–7CrossRef Dhatarwal P, Sengwa RJ, Choudhary S (2017) Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Comp Comm 5:1–7CrossRef
29.
go back to reference Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRef Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370CrossRef
30.
go back to reference Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend–based nanocomposite electrolytes. J Appl Polym Sci 132:41311 Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend–based nanocomposite electrolytes. J Appl Polym Sci 132:41311
31.
go back to reference Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influences of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3–x wt% MMT nanocomposite electrolytes. Ionics 21:95–109CrossRef Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influences of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3x wt% MMT nanocomposite electrolytes. Ionics 21:95–109CrossRef
32.
go back to reference Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143CrossRef Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143CrossRef
33.
go back to reference Dhatarwal P, Sengwa RJ (2017) Effects of PEG plasticizer concentrations and film preparation methods on the structural, dielectric and electrical properties of PEO–PMMA blend based plasticized solid polymer electrolyte films. Indian J Pure Appl Phys 55:7–18 Dhatarwal P, Sengwa RJ (2017) Effects of PEG plasticizer concentrations and film preparation methods on the structural, dielectric and electrical properties of PEO–PMMA blend based plasticized solid polymer electrolyte films. Indian J Pure Appl Phys 55:7–18
34.
go back to reference Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941CrossRef Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941CrossRef
35.
go back to reference Choudhary S, Sengwa RJ (2014) Intercalated clay structures and amorphous behaviour of solution cast and melt pressed poly(ethylene oxide)–clay nanocomposites. J Appl Polym Sci 131:39898CrossRef Choudhary S, Sengwa RJ (2014) Intercalated clay structures and amorphous behaviour of solution cast and melt pressed poly(ethylene oxide)–clay nanocomposites. J Appl Polym Sci 131:39898CrossRef
36.
go back to reference Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186CrossRef Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186CrossRef
37.
go back to reference Naveen Kumar K, Saijyothi K, Vijayalakshmi L, Kang M (2017) Copper–constantan nanoparticles impregnated PEO + PVP:Li+ blended solid polymer electrolyte films for lithium battery applications. Polym Bull 74:2545–2564CrossRef Naveen Kumar K, Saijyothi K, Vijayalakshmi L, Kang M (2017) Copper–constantan nanoparticles impregnated PEO + PVP:Li+ blended solid polymer electrolyte films for lithium battery applications. Polym Bull 74:2545–2564CrossRef
38.
go back to reference Arunkumar R, Babu RS, Rani MU, Rajendran S (2017) Influence of plasticizer on ionic conductivity of PVC–PBMA polymer electrolytes. Ionics 23:3097–3109CrossRef Arunkumar R, Babu RS, Rani MU, Rajendran S (2017) Influence of plasticizer on ionic conductivity of PVC–PBMA polymer electrolytes. Ionics 23:3097–3109CrossRef
39.
go back to reference Das S, Ghosh A (2016) Ionic relaxation in PEO/PVdF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration. J Phys D Appl Phys 49:235601CrossRef Das S, Ghosh A (2016) Ionic relaxation in PEO/PVdF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration. J Phys D Appl Phys 49:235601CrossRef
40.
go back to reference Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London
41.
go back to reference Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78:639–648CrossRef Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78:639–648CrossRef
42.
go back to reference Rozik NN, Ward AA (2018) A novel approach on poly(ionic liquid)-based poly(vinyl alcohol) as a hydrophilic/hydrophobic conductive polymer electrolytes. Polym Bull 75:267–287CrossRef Rozik NN, Ward AA (2018) A novel approach on poly(ionic liquid)-based poly(vinyl alcohol) as a hydrophilic/hydrophobic conductive polymer electrolytes. Polym Bull 75:267–287CrossRef
43.
go back to reference Sownthari K, Suthanthiraraj SA (2015) Influence of Al2O3 nanofiller on the properties of polymer electrolyte based on poly-ε-caprolactone. Polym Bull 72:61–73CrossRef Sownthari K, Suthanthiraraj SA (2015) Influence of Al2O3 nanofiller on the properties of polymer electrolyte based on poly-ε-caprolactone. Polym Bull 72:61–73CrossRef
44.
go back to reference Basha SKS, Sundari GS, Kumar KV, Rao MC (2018) Preparation and dielectric properties of PVP-based polymer electrolytes films for solid-state battery applications. Polym Bull 75:925–945CrossRef Basha SKS, Sundari GS, Kumar KV, Rao MC (2018) Preparation and dielectric properties of PVP-based polymer electrolytes films for solid-state battery applications. Polym Bull 75:925–945CrossRef
45.
go back to reference Liu Y, Lee JY, Hong L (2002) Functionalized SiO2 in poly(ethylene oxide)–based polymer electrolytes. J Power Sources 109:507–514CrossRef Liu Y, Lee JY, Hong L (2002) Functionalized SiO2 in poly(ethylene oxide)–based polymer electrolytes. J Power Sources 109:507–514CrossRef
46.
go back to reference Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of In Situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822CrossRef Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of In Situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822CrossRef
47.
go back to reference Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly (methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96:406–410CrossRef Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly (methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96:406–410CrossRef
48.
go back to reference Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed type polymer nanocomposite films. J Phys D Appl Phys 51:045504CrossRef Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed type polymer nanocomposite films. J Phys D Appl Phys 51:045504CrossRef
49.
go back to reference Prabakaran P, Manimuthu RP (2016) Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes. Ionics 22:827–839CrossRef Prabakaran P, Manimuthu RP (2016) Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes. Ionics 22:827–839CrossRef
50.
go back to reference Kumar Y, Hashmi SA, Pandey GP (2011) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201:73–80CrossRef Kumar Y, Hashmi SA, Pandey GP (2011) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201:73–80CrossRef
51.
go back to reference Mohapatra SR, Thakur AK, Choudhary RNP (2011) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage. J Power Sources 191:601–613CrossRef Mohapatra SR, Thakur AK, Choudhary RNP (2011) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage. J Power Sources 191:601–613CrossRef
52.
go back to reference Pandey GP, Hashmi SA (2013) Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources 243:211–218CrossRef Pandey GP, Hashmi SA (2013) Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources 243:211–218CrossRef
53.
go back to reference Chandra A (2013) Synthesis and ion transport characterization of hot-pressed Ag+ ion conducting glass-polymer electrolytes. Indian J Phys 87:643–649CrossRef Chandra A (2013) Synthesis and ion transport characterization of hot-pressed Ag+ ion conducting glass-polymer electrolytes. Indian J Phys 87:643–649CrossRef
54.
go back to reference Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501CrossRef Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7:23494–23501CrossRef
55.
go back to reference Rocco AM, Pereira RP (2015) Solid electrolytes based on poly (ethylene oxide)/poly (4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ionics 279:78–89CrossRef Rocco AM, Pereira RP (2015) Solid electrolytes based on poly (ethylene oxide)/poly (4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ionics 279:78–89CrossRef
56.
go back to reference Sohaimy MIH, Isa MIN (2017) Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate. Polym Bull 74:1371–1386CrossRef Sohaimy MIH, Isa MIN (2017) Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate. Polym Bull 74:1371–1386CrossRef
Metadata
Title
Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications
Authors
Priyanka Dhatarwal
R. J. Sengwa
Publication date
07-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 12/2018
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2354-6

Other articles of this Issue 12/2018

Polymer Bulletin 12/2018 Go to the issue

Premium Partners