Skip to main content
Erschienen in: Polymer Bulletin 4/2017

18.08.2016 | Original Paper

Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate

verfasst von: M. I. H. Sohaimy, M. I. N. Isa

Erschienen in: Polymer Bulletin | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work deals with the formation of solid polymer electrolytes (SPE) from carboxy methylcellulose (CMC) and doped with ammonium carbonate ((NH4)2CO3). The CMC–(NH4)2CO3 SPE was characterized with electrical impedance spectroscopy (EIS) and transference number measurement (TNM) to understand its electrical and conduction mechanism. Fourier transform infrared (FTIR) were conducted to correlate the complexation of the SPE with conductivity and conduction mechanism. Complexation appears to occur mainly in CMC carboxyl group (C=O). The highest ionic conductivity obtained is 7.71 × 10−6 Scm−1 for samples incorporated with 7 wt% of (NH4)2CO3. Lowest activation energy, E a achieved is 0.21 eV corresponds to the highest conductivity sample. Ionic conductivity measurement at elevated temperature follows Arrhenius model. Dielectric study of the sample shows dependence to temperature, but not to the frequency. CMC–(NH4)2CO3 SPE sample with the highest conductivity has transference number, \(t_{ + }\) of 0.98 proving of its conduction is predominantly cation. Quantum mechanical tunneling (QMT) was the best model to explain the conduction mechanism of the highest conductivity sample.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of com-posite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32CrossRef Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of com-posite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32CrossRef
2.
Zurück zum Zitat Kim HJ, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang K, Wei WF, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR (2013) Liquid metal batteries: past, present, and future. Chem Rev 113:2075–2099CrossRef Kim HJ, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang K, Wei WF, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR (2013) Liquid metal batteries: past, present, and future. Chem Rev 113:2075–2099CrossRef
3.
Zurück zum Zitat Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
4.
Zurück zum Zitat Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319CrossRef Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319CrossRef
5.
Zurück zum Zitat Geiculescu OE, Yang J, Blau H, Bailey-Walsh R, Creager SE, Pennington WT, DesMarteau DD (2002) Solid polymer electrolytes from dilithium salts based on new bis [(perfluoroalkyl) sulfonyl] diimide di anions. Preparation and electrical characterization. Solid State Ionic 48:173–183CrossRef Geiculescu OE, Yang J, Blau H, Bailey-Walsh R, Creager SE, Pennington WT, DesMarteau DD (2002) Solid polymer electrolytes from dilithium salts based on new bis [(perfluoroalkyl) sulfonyl] diimide di anions. Preparation and electrical characterization. Solid State Ionic 48:173–183CrossRef
6.
Zurück zum Zitat Amrtha B, Hariharan K (2007) Ionic transport studies on (PEO) 6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polymer J 43:4253–4270CrossRef Amrtha B, Hariharan K (2007) Ionic transport studies on (PEO) 6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polymer J 43:4253–4270CrossRef
7.
Zurück zum Zitat Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration. Solid State Ionics 66:97–104CrossRef Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration. Solid State Ionics 66:97–104CrossRef
8.
Zurück zum Zitat Voigt N, Wüllen LV (2012) The mechanism of ionic transport in PAN-based solid polymer electrolytes. Solid State Ionics 208:8–16CrossRef Voigt N, Wüllen LV (2012) The mechanism of ionic transport in PAN-based solid polymer electrolytes. Solid State Ionics 208:8–16CrossRef
9.
Zurück zum Zitat Ramesh S, Ng KY (2009) Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr Appl Phys 9(2):329–332CrossRef Ramesh S, Ng KY (2009) Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr Appl Phys 9(2):329–332CrossRef
10.
Zurück zum Zitat Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13CrossRef Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13CrossRef
11.
Zurück zum Zitat Ramesh S, Chiam WL, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexaf-luorophosphate. J Non-Cryst Solids 357:3654–3660CrossRef Ramesh S, Chiam WL, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexaf-luorophosphate. J Non-Cryst Solids 357:3654–3660CrossRef
12.
Zurück zum Zitat Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch + ammonium iodide. Carbohydr Polym 88(1):54–60CrossRef Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch + ammonium iodide. Carbohydr Polym 88(1):54–60CrossRef
13.
Zurück zum Zitat Du JF, Bai Y, Pan DA, Chu WY, Qiao LJ (2009) Characteristics of proton conducting polymer electrolyte based on chitosan acetate complexed with CH3COONH4. J Polym Sci Part B Polym Physic 47(6):549–554CrossRef Du JF, Bai Y, Pan DA, Chu WY, Qiao LJ (2009) Characteristics of proton conducting polymer electrolyte based on chitosan acetate complexed with CH3COONH4. J Polym Sci Part B Polym Physic 47(6):549–554CrossRef
14.
Zurück zum Zitat Cabello SDP, Mollá S, Ochoa NA, Marchese J, Giménez E, Compañ V (2014) New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J Power Sources 265:345–355CrossRef Cabello SDP, Mollá S, Ochoa NA, Marchese J, Giménez E, Compañ V (2014) New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J Power Sources 265:345–355CrossRef
15.
Zurück zum Zitat Adinugraha MP, Marseno DW (2005) Haryadi Synthesis and characterization of sodium carboxymethyl cellulose from Cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydr Polym 62:164–169CrossRef Adinugraha MP, Marseno DW (2005) Haryadi Synthesis and characterization of sodium carboxymethyl cellulose from Cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydr Polym 62:164–169CrossRef
16.
Zurück zum Zitat Chai MN, Isa MIN (2013) The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte. J Crystallization Process Technol 3:1–4CrossRef Chai MN, Isa MIN (2013) The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte. J Crystallization Process Technol 3:1–4CrossRef
17.
Zurück zum Zitat Heydarzadeh HD, Najafpour GD, Nazari-Moghaddam AA (2009) Catalyst-free conversion of alkali cellulose to fine carboxymethyl cellulose at mild conditions. World Appl Sci J 6(4):564–569 Heydarzadeh HD, Najafpour GD, Nazari-Moghaddam AA (2009) Catalyst-free conversion of alkali cellulose to fine carboxymethyl cellulose at mild conditions. World Appl Sci J 6(4):564–569
18.
Zurück zum Zitat Sassoa C, Beneventia D, Zeno E, Conil MP, Chaussya D, Belgacema MN (2011) Carboxymethyl cellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium. Synth Met 161:397–403CrossRef Sassoa C, Beneventia D, Zeno E, Conil MP, Chaussya D, Belgacema MN (2011) Carboxymethyl cellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium. Synth Met 161:397–403CrossRef
19.
Zurück zum Zitat Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Phys B 404:1373–1379CrossRef Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Phys B 404:1373–1379CrossRef
20.
Zurück zum Zitat Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358(8):1104–1112CrossRef Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358(8):1104–1112CrossRef
21.
Zurück zum Zitat Raghu S, Kilarkaje S, Sanjeev G, Nagaraja GK, Devendrappa H (2014) Effect of electron beam irradiation on polymer electrolytes: change in morphology, crystallinity, dielectric constant and AC conductivity with dose. Radiat Phys Chem 98:124–131CrossRef Raghu S, Kilarkaje S, Sanjeev G, Nagaraja GK, Devendrappa H (2014) Effect of electron beam irradiation on polymer electrolytes: change in morphology, crystallinity, dielectric constant and AC conductivity with dose. Radiat Phys Chem 98:124–131CrossRef
22.
Zurück zum Zitat Samsudin AS, Isa MIN (2012) Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J Appl Sci 12(2):174–179CrossRef Samsudin AS, Isa MIN (2012) Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J Appl Sci 12(2):174–179CrossRef
23.
Zurück zum Zitat Kamarudin KH, Isa MIN (2013) Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci 8(31):1581–1587 Kamarudin KH, Isa MIN (2013) Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci 8(31):1581–1587
24.
Zurück zum Zitat Biswal DR, Singh RP (2004) Characterisation of Carboxymethyl Cellulose and Polycrylamide graft copolymer. Carbohydr Polym 57:379–387CrossRef Biswal DR, Singh RP (2004) Characterisation of Carboxymethyl Cellulose and Polycrylamide graft copolymer. Carbohydr Polym 57:379–387CrossRef
25.
Zurück zum Zitat Tongdeesootorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based film. Chem Cent J 5(6):1–8 Tongdeesootorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based film. Chem Cent J 5(6):1–8
26.
Zurück zum Zitat Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Physica B 403(17):2740–2747CrossRef Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Physica B 403(17):2740–2747CrossRef
27.
Zurück zum Zitat Samsudin AS, Isa MIN (2011) New types of biopolymer electrolytes: ionic conductivity study on CMC doped with NH4Br. J Curr Eng Res 1:7–11 Samsudin AS, Isa MIN (2011) New types of biopolymer electrolytes: ionic conductivity study on CMC doped with NH4Br. J Curr Eng Res 1:7–11
28.
Zurück zum Zitat Nik Aziz NA, Idris NK, Isa MIN (2010) Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: conductivity and ionic transport studies. International Journal of the Physical Sciences 5(6):748–752 Nik Aziz NA, Idris NK, Isa MIN (2010) Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: conductivity and ionic transport studies. International Journal of the Physical Sciences 5(6):748–752
29.
Zurück zum Zitat Macedo PB, Litovitz TA (1965) On the relative roles of free volume and activation energy in the viscosity of liquids. J Chem Phys 42:245CrossRef Macedo PB, Litovitz TA (1965) On the relative roles of free volume and activation energy in the viscosity of liquids. J Chem Phys 42:245CrossRef
30.
Zurück zum Zitat Cohen MH, Grest GS (1982) Erratum: liquid-glass transition, a free-volume approach. Phys Rev B 26:6313CrossRef Cohen MH, Grest GS (1982) Erratum: liquid-glass transition, a free-volume approach. Phys Rev B 26:6313CrossRef
31.
Zurück zum Zitat Samsudin AS, Isa MIN (2012) Characterization of carboxy methylcellulose doped with DTAB as new types of biopolymer electrolytes. Bull Mat Sci 35(7):1123–1131CrossRef Samsudin AS, Isa MIN (2012) Characterization of carboxy methylcellulose doped with DTAB as new types of biopolymer electrolytes. Bull Mat Sci 35(7):1123–1131CrossRef
32.
Zurück zum Zitat Idris NK, Nik Aziz NA, Zambri MSM, Zakaria NA, Isa MIN (2009) Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. Ionics 15:643–646CrossRef Idris NK, Nik Aziz NA, Zambri MSM, Zakaria NA, Isa MIN (2009) Ionic conductivity studies of chitosan-based polymer electrolytes doped with adipic acid. Ionics 15:643–646CrossRef
33.
Zurück zum Zitat Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Phys B 373:23–27CrossRef Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Phys B 373:23–27CrossRef
34.
Zurück zum Zitat Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ionics 252:102–108CrossRef Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ionics 252:102–108CrossRef
35.
Zurück zum Zitat Ganea CP (2012) New approach of the ac electrode polarization during the measurements of impedance spectra. Rom J Phys 57:664–675 Ganea CP (2012) New approach of the ac electrode polarization during the measurements of impedance spectra. Rom J Phys 57:664–675
36.
Zurück zum Zitat Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Physica B 355(1–4):78–82CrossRef Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Physica B 355(1–4):78–82CrossRef
37.
Zurück zum Zitat Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168CrossRef Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168CrossRef
38.
Zurück zum Zitat Tao R, Zhao Y, Fujinami T (2007) Lithium borate–PEO polymer electrolytes characterized with high lithium ion transference numbers. Mater Sci Eng B 137(1–3):69–73CrossRef Tao R, Zhao Y, Fujinami T (2007) Lithium borate–PEO polymer electrolytes characterized with high lithium ion transference numbers. Mater Sci Eng B 137(1–3):69–73CrossRef
39.
Zurück zum Zitat Lu N, Yu MH, Chi WF, Fu MW, Jyh TL (2007) A simple method for synthesizing polymeric lithium salts exhibiting relatively high cationic transference number in solid polymer electrolytes. Solid State Ionics 178(5–6):347–353CrossRef Lu N, Yu MH, Chi WF, Fu MW, Jyh TL (2007) A simple method for synthesizing polymeric lithium salts exhibiting relatively high cationic transference number in solid polymer electrolytes. Solid State Ionics 178(5–6):347–353CrossRef
40.
Zurück zum Zitat Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68:122–130CrossRef Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68:122–130CrossRef
41.
Zurück zum Zitat Chai MN, Isa MIN (2013) Electrical characterization and ionic transport properties of carboxyl methylcellulose-oleic acid solid polymer electrolytes. Int J Polym Anal Charact 18:280–286CrossRef Chai MN, Isa MIN (2013) Electrical characterization and ionic transport properties of carboxyl methylcellulose-oleic acid solid polymer electrolytes. Int J Polym Anal Charact 18:280–286CrossRef
42.
Zurück zum Zitat Hafiza MN, Isa MIN (2014) Ionic conductivity and conduction mechanism studies of cmc/chitosan biopolymer blend electrolytes. Res J Recent Sci 3(11):50–56 Hafiza MN, Isa MIN (2014) Ionic conductivity and conduction mechanism studies of cmc/chitosan biopolymer blend electrolytes. Res J Recent Sci 3(11):50–56
43.
Zurück zum Zitat Nasri S, Megdiche M, Gargouri M (2014) Electrical conduction and dielectric properties of a newly synthesized single phase:Ag0.4Na0.6FeP2O7. Phys B 451:120–127CrossRef Nasri S, Megdiche M, Gargouri M (2014) Electrical conduction and dielectric properties of a newly synthesized single phase:Ag0.4Na0.6FeP2O7. Phys B 451:120–127CrossRef
44.
Zurück zum Zitat Farag AAM, Fadel M, Yahia IS (2012) Analysis of the electrical properties of p–n GaAs homojunction under dc and ac fields. Curr Appl Phys 12:1436–1444CrossRef Farag AAM, Fadel M, Yahia IS (2012) Analysis of the electrical properties of p–n GaAs homojunction under dc and ac fields. Curr Appl Phys 12:1436–1444CrossRef
45.
Zurück zum Zitat Isa MIN, Samsudin AS (2013) Ionic conduction behavior of cmc based green polymer electrolytes. Adv Mater Res 802:194–198CrossRef Isa MIN, Samsudin AS (2013) Ionic conduction behavior of cmc based green polymer electrolytes. Adv Mater Res 802:194–198CrossRef
46.
Zurück zum Zitat Shukur MF, Ibrahim FM, Ithnin Majid NA, Kadir MFZ (2013) Electrical analysis of amorphous cornstarch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:1–9CrossRef Shukur MF, Ibrahim FM, Ithnin Majid NA, Kadir MFZ (2013) Electrical analysis of amorphous cornstarch-based polymer electrolyte membranes doped with LiI. Phys Scr 88:1–9CrossRef
Metadaten
Titel
Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate
verfasst von
M. I. H. Sohaimy
M. I. N. Isa
Publikationsdatum
18.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1781-5

Weitere Artikel der Ausgabe 4/2017

Polymer Bulletin 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.