Skip to main content
Erschienen in: Polymer Bulletin 1/2015

01.01.2015 | Original Paper

Influence of Al2O3 nanofiller on the properties of polymer electrolyte based on poly-ε-caprolactone

verfasst von: K. Sownthari, S. Austin Suthanthiraraj

Erschienen in: Polymer Bulletin | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocomposite polymer electrolytes (NCPE), with varying concentrations of Al2O3 nanofiller in an optimized composition containing 75:25 wt% ratio of poly-ε-caprolactone (PCL) and zinc trifluoromethanesulfonate (ZnTr), were prepared by solution casting method. A maximum ionic conductivity of 2.5 × 10−5 S cm−1 was achieved at room temperature for 5 wt% loading of the nanofiller. Crystalline peaks observed in the X-ray diffraction pattern were deconvoluted from the amorphous halo to estimate the degree of crystallinity of the prepared NCPEs. Scanning electron microscopic evaluation indicated the reduction in the spherulite size of NCPE with the incorporation of nanofiller. Cationic transference number (\(t_{{{\text{Zn}}^{2 + } }}\)) of the typical NCPE with 5 wt% nanofiller was found to be >0.5, whereas the decomposition voltage of the polymer electrolyte increased from 2.5 to 2.7 V with the incorporation of the Al2O3 nanofiller. The prepared NCPE could be used to fabricate eco-friendly primary as well as secondary battery systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramesh S, Liew C-W, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660CrossRef Ramesh S, Liew C-W, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660CrossRef
2.
Zurück zum Zitat Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid state electrochromic devices with gelatin-based electrolyte. Sol Energy Mater Sol Cells 92:228–233CrossRef Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid state electrochromic devices with gelatin-based electrolyte. Sol Energy Mater Sol Cells 92:228–233CrossRef
3.
Zurück zum Zitat Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81CrossRef Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81CrossRef
4.
Zurück zum Zitat Puteh R, Yahya MZA, Ali AMM, Sulaiman MA, Yahya R (2005) Conductivity studies on chitosan-based polymer electrolytes with lithium salts. Indones J Phys 16:17–19 Puteh R, Yahya MZA, Ali AMM, Sulaiman MA, Yahya R (2005) Conductivity studies on chitosan-based polymer electrolytes with lithium salts. Indones J Phys 16:17–19
5.
Zurück zum Zitat Kim YD, Jo YK, Jo NJ (2012) Electrochemical performance of poly(vinyl alcohol)-based solid polymer electrolyte for lithium polymer batteries. J Nanosci Nanotechnol. 4:3529–3533CrossRef Kim YD, Jo YK, Jo NJ (2012) Electrochemical performance of poly(vinyl alcohol)-based solid polymer electrolyte for lithium polymer batteries. J Nanosci Nanotechnol. 4:3529–3533CrossRef
6.
Zurück zum Zitat Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ion 199–200:14–20CrossRef Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ion 199–200:14–20CrossRef
7.
Zurück zum Zitat Ng BC, Wong HY, Chew KW, Osman Z (2011) Development and characterization of poly-ε-caprolactone based polymer electrolyte for lithium rechargeable battery. Int J Electrochem Sci 6:4355–4364 Ng BC, Wong HY, Chew KW, Osman Z (2011) Development and characterization of poly-ε-caprolactone based polymer electrolyte for lithium rechargeable battery. Int J Electrochem Sci 6:4355–4364
8.
Zurück zum Zitat Fonseca CP, Neves S (2006) Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J Power Sour 159:712–716CrossRef Fonseca CP, Neves S (2006) Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J Power Sour 159:712–716CrossRef
9.
Zurück zum Zitat Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer: polycaprolactone in the 21st century. Progr Polym Sci 35:1217–1256CrossRef Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer: polycaprolactone in the 21st century. Progr Polym Sci 35:1217–1256CrossRef
10.
Zurück zum Zitat Wu K-J, Wu C-S, Chang J-S (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Proc Biochem 42:669–675CrossRef Wu K-J, Wu C-S, Chang J-S (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Proc Biochem 42:669–675CrossRef
11.
Zurück zum Zitat Sownthari K, Suthanthiraraj SA (2013) Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polym Lett 7:495–504CrossRef Sownthari K, Suthanthiraraj SA (2013) Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polym Lett 7:495–504CrossRef
12.
Zurück zum Zitat Fonseca CP, Cavalcante F Jr, Amaral FA, Souza CAZ, Neves S (2007) Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts. Int J Electrochem Sci 2:52–63 Fonseca CP, Cavalcante F Jr, Amaral FA, Souza CAZ, Neves S (2007) Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts. Int J Electrochem Sci 2:52–63
13.
Zurück zum Zitat Asmara SN, Kufian MZ, Majid SR, Arof AK (2011) Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochim Acta 57:91–97CrossRef Asmara SN, Kufian MZ, Majid SR, Arof AK (2011) Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochim Acta 57:91–97CrossRef
14.
Zurück zum Zitat Kumar GG, Munichandraiah N (1999) Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte. Electrochim Acta 44:2663–2666CrossRef Kumar GG, Munichandraiah N (1999) Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte. Electrochim Acta 44:2663–2666CrossRef
15.
Zurück zum Zitat Kumar GG, Sampath S (2003) Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ion 160:289–300CrossRef Kumar GG, Sampath S (2003) Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ion 160:289–300CrossRef
16.
Zurück zum Zitat Latham RJ, Rowlands SE, Schlindwein WS (2002) Supercapacitors using polymer electrolytes based on poly(urethane). Solid State Ion 147:243–248CrossRef Latham RJ, Rowlands SE, Schlindwein WS (2002) Supercapacitors using polymer electrolytes based on poly(urethane). Solid State Ion 147:243–248CrossRef
17.
Zurück zum Zitat Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sour 77:183–197CrossRef Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sour 77:183–197CrossRef
18.
Zurück zum Zitat Lee JS, Bae JY, Lee H, Quan ND, Kim HS, Kim H (2004) Ionic liquids as electrolytes for Li ion battery. J Ind Eng Chem 7:1086–1089 Lee JS, Bae JY, Lee H, Quan ND, Kim HS, Kim H (2004) Ionic liquids as electrolytes for Li ion battery. J Ind Eng Chem 7:1086–1089
19.
Zurück zum Zitat Ye H, Xu JJ (2007) Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J Power Sour 165:500–508CrossRef Ye H, Xu JJ (2007) Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J Power Sour 165:500–508CrossRef
20.
Zurück zum Zitat Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano Manganese-composite polymer electrolytes. Int J Electrochem Sci 6:4737–4748 Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano Manganese-composite polymer electrolytes. Int J Electrochem Sci 6:4737–4748
21.
Zurück zum Zitat Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRef Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRef
22.
Zurück zum Zitat Ulaganathan M, Nithya R, Rajendran S, Raghu S (2012) Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ion 218:7–12CrossRef Ulaganathan M, Nithya R, Rajendran S, Raghu S (2012) Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ion 218:7–12CrossRef
23.
Zurück zum Zitat Nithya H, Selvasekarapandian S, Selvin PC, Kumar DA, Hema M, Prakash D (2011) Characterization of nanocomposite polymer electrolyte based on P(ECH-EO). Phys B 406:3367–3373CrossRef Nithya H, Selvasekarapandian S, Selvin PC, Kumar DA, Hema M, Prakash D (2011) Characterization of nanocomposite polymer electrolyte based on P(ECH-EO). Phys B 406:3367–3373CrossRef
24.
Zurück zum Zitat Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328CrossRef Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328CrossRef
25.
Zurück zum Zitat Samir MASA, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposites polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852CrossRef Samir MASA, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposites polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852CrossRef
26.
Zurück zum Zitat Mark JE (1999) Polymer data handbook. Oxford University Press, New York Mark JE (1999) Polymer data handbook. Oxford University Press, New York
27.
Zurück zum Zitat Chan N, Rai N, Agrawal SL, Patel SK (2011) Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte. Bull Mater Sci 34:1297–1304CrossRef Chan N, Rai N, Agrawal SL, Patel SK (2011) Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte. Bull Mater Sci 34:1297–1304CrossRef
28.
Zurück zum Zitat Sundaram NTK, Vasudevan T, Subramania A (2007) Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles. J Phys Chem Solids 68:264–271CrossRef Sundaram NTK, Vasudevan T, Subramania A (2007) Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles. J Phys Chem Solids 68:264–271CrossRef
29.
Zurück zum Zitat Hyun J (2001) A new approach to characterize crystallinity by observing the mobility of plasma treated polymer surfaces. Polymer 42:6473–6477CrossRef Hyun J (2001) A new approach to characterize crystallinity by observing the mobility of plasma treated polymer surfaces. Polymer 42:6473–6477CrossRef
30.
Zurück zum Zitat Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157:A846–A849CrossRef Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157:A846–A849CrossRef
31.
Zurück zum Zitat Bonino F, Scrosati B, Selvaggi A (1986) The lithium-polymer electrolyte interface. I. Lithium cyclability. Solid State Ion 18–19:1050–1053CrossRef Bonino F, Scrosati B, Selvaggi A (1986) The lithium-polymer electrolyte interface. I. Lithium cyclability. Solid State Ion 18–19:1050–1053CrossRef
Metadaten
Titel
Influence of Al2O3 nanofiller on the properties of polymer electrolyte based on poly-ε-caprolactone
verfasst von
K. Sownthari
S. Austin Suthanthiraraj
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 1/2015
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-014-1259-2

Weitere Artikel der Ausgabe 1/2015

Polymer Bulletin 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.