Skip to main content
Top

2018 | OriginalPaper | Chapter

3.  Lab-on-a-chip Systems for Cellomics—Materials and Technology

Authors : Dominika Kalinowska, Katarzyna Tokarska, Ilona Grabowska-Jadach, Artur Dybko, Zbigniew Brzozka

Published in: Cardiac Cell Culture Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main advantage of the microsystems is their ability to imitate in vivo conditions which are missing in macroscale cell cultures. The materials which find applications in Lab-on-a-chip devices for cellomics, their properties, and microfabrication techniques are presented in this chapter. Such microfluidic devices are useful tools in many fields involving cell culture studies, e.g., cell trapping, counting or sorting, cell lysis and fusion, cultivation, and drug screening. Construction materials, not only the most commonly used poly(dimethyl siloxane) (PDMS) and glass, but also such polymers as polystyrene (PS), poly(methyl methacrylate) (PMMA), polycarbonate (PC), and cyclic olefin copolymer (COC), are presented. There are many materials which are utilized to create spatial arrangement of the cells in the developed microsystems. For this purpose, natural (e.g., collagen), synthetic (e.g., poly(ethylene glycol)—PEG), and hybrid (e.g., gelatin methacryloyl—GelMA) hydrogels as well as nanofibrous scaffolds are applied. We present short description and some examples of the usage of above materials. This chapter also describes the most common fabrication methods of Lab-on-a-chip (LOC) devices for cellomics. These considerations are extended to potential mass production of cell-based microsystems, using a range of materials. Adopting more time and cost-effective fabrication methods is critical for the integration of LOCs into mainstream applications, and therefore, factors such as quality control or device repeatability were detailed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allen PB, Chiu DT (2008) Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. Anal Chem 80:7153–7157CrossRef Allen PB, Chiu DT (2008) Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. Anal Chem 80:7153–7157CrossRef
go back to reference Alrifaiy A, Lindahl OA, Ramser K (2012) Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers 4:1349–1398CrossRef Alrifaiy A, Lindahl OA, Ramser K (2012) Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers 4:1349–1398CrossRef
go back to reference Altmann B, Giselbrecht S, Weibezahn KF, Gottwald E (2008) The three-dimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture. Biomed Mater 3:1–10CrossRef Altmann B, Giselbrecht S, Weibezahn KF, Gottwald E (2008) The three-dimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture. Biomed Mater 3:1–10CrossRef
go back to reference Anderson JR, Chiu DT, Jackman RJ, Chemiavskaya O, McDonald JC, Wu H, Whitesides SH, Whitesides GM (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164CrossRef Anderson JR, Chiu DT, Jackman RJ, Chemiavskaya O, McDonald JC, Wu H, Whitesides SH, Whitesides GM (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164CrossRef
go back to reference Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26CrossRef Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26CrossRef
go back to reference Becker H, Gartner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRef Becker H, Gartner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRef
go back to reference Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287CrossRef Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287CrossRef
go back to reference Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mat Sci Eng C-Mater 44:268–277CrossRef Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mat Sci Eng C-Mater 44:268–277CrossRef
go back to reference Bichsel AC, Gobaa S, Kobel S, Secondini C, Thalmann GN, Cecchini MG, Lutolf MP (2012) Diagnostic microchip to assay 3D colony-growth potential of captured circulating tumor cells. Lab Chip 12:2313–2316CrossRef Bichsel AC, Gobaa S, Kobel S, Secondini C, Thalmann GN, Cecchini MG, Lutolf MP (2012) Diagnostic microchip to assay 3D colony-growth potential of captured circulating tumor cells. Lab Chip 12:2313–2316CrossRef
go back to reference Buchanan CF, Voigt EE, Szot ChS, Freeman JW, Vlachos PP, Rylander MN (2014) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng C 20:64–75CrossRef Buchanan CF, Voigt EE, Szot ChS, Freeman JW, Vlachos PP, Rylander MN (2014) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng C 20:64–75CrossRef
go back to reference Carvalho MR, Lima D, Reis RL, Correlo VM, Oliveira JM (2015) Evaluating biomaterial- and microfluidic based 3D tumor models. Trends Biotechnol 33:667–678CrossRef Carvalho MR, Lima D, Reis RL, Correlo VM, Oliveira JM (2015) Evaluating biomaterial- and microfluidic based 3D tumor models. Trends Biotechnol 33:667–678CrossRef
go back to reference Castano-Alvareza M, Pozo Ayusob DF, Granda MG, Fernandez-Abedula MT, Garciab JR, Costa-Garciaa A (2008) Critical points in the fabrication of microfluidic devices on glass substrates. Sensors Acutat A-Phys 130:436–448CrossRef Castano-Alvareza M, Pozo Ayusob DF, Granda MG, Fernandez-Abedula MT, Garciab JR, Costa-Garciaa A (2008) Critical points in the fabrication of microfluidic devices on glass substrates. Sensors Acutat A-Phys 130:436–448CrossRef
go back to reference Chan YCh, Goral VN, DeRosa ME, Huang TJ, Yuen PK (2014) A polystyrene-based microfluidic device with three dimensional interconnected microporous walls for perfusion cell culture. Biomicrofluidics 8:046505CrossRef Chan YCh, Goral VN, DeRosa ME, Huang TJ, Yuen PK (2014) A polystyrene-based microfluidic device with three dimensional interconnected microporous walls for perfusion cell culture. Biomicrofluidics 8:046505CrossRef
go back to reference Chen CS, Chen SC, Liao WH, Chien RD, Lin SH (2010) Micro injection molding of a microfluidic platform. Int Commun Heat Mass Transf 37:1290–1294CrossRef Chen CS, Chen SC, Liao WH, Chien RD, Lin SH (2010) Micro injection molding of a microfluidic platform. Int Commun Heat Mass Transf 37:1290–1294CrossRef
go back to reference Chen Ch, Mehl BT, Sell S, Martin RS (2016) Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices. Analyst 141:5311–5320CrossRef Chen Ch, Mehl BT, Sell S, Martin RS (2016) Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices. Analyst 141:5311–5320CrossRef
go back to reference Cheng JY, Yen MH, Kuo ChT, Young TH (2008) A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2:024105CrossRef Cheng JY, Yen MH, Kuo ChT, Young TH (2008) A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2:024105CrossRef
go back to reference Choucha-Snouber L, Aninat C, Grsicom L, Madalinski G, Brochot C, Poleni PE, Razan F, Guillouzo CG, Legallais C, Corlu A, Leclerc E (2013) Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol Bioeng 110:597–608CrossRef Choucha-Snouber L, Aninat C, Grsicom L, Madalinski G, Brochot C, Poleni PE, Razan F, Guillouzo CG, Legallais C, Corlu A, Leclerc E (2013) Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol Bioeng 110:597–608CrossRef
go back to reference Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohyd Polym 92:1262–1279CrossRef Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohyd Polym 92:1262–1279CrossRef
go back to reference Denkena B, Hoffmeister HW, Reichstein M, Illenseer S, Hlavac M (2006) Micro-machining processes for microsystem technology. Microsyst Technol 12:659–664CrossRef Denkena B, Hoffmeister HW, Reichstein M, Illenseer S, Hlavac M (2006) Micro-machining processes for microsystem technology. Microsyst Technol 12:659–664CrossRef
go back to reference Dickinson LE, Lutgebaucks C, Lewis DM, Gerecht S (2012) Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro. Lab Chip 12:4244–4248CrossRef Dickinson LE, Lutgebaucks C, Lewis DM, Gerecht S (2012) Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro. Lab Chip 12:4244–4248CrossRef
go back to reference Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRef Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRef
go back to reference Fan X, Jia Ch, Yang J, Li G, Mao H, Jin Q, Zhao J (2015) A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron 71:380–386CrossRef Fan X, Jia Ch, Yang J, Li G, Mao H, Jin Q, Zhao J (2015) A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron 71:380–386CrossRef
go back to reference Fede C, Fortunati I, Weber V, Rossetto N, Bertasi F, Petrelli L, Guidolin D, Signorini R, De Caro R, Albertin G, Ferrante C (2015) Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Microvas Res 97:147–155CrossRef Fede C, Fortunati I, Weber V, Rossetto N, Bertasi F, Petrelli L, Guidolin D, Signorini R, De Caro R, Albertin G, Ferrante C (2015) Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Microvas Res 97:147–155CrossRef
go back to reference Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38:429–446CrossRef Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38:429–446CrossRef
go back to reference Geckil H, Xu F, Zhang X, Moon S, Demirci U (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 5:469–484CrossRef Geckil H, Xu F, Zhang X, Moon S, Demirci U (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 5:469–484CrossRef
go back to reference Gel M, Kandasamy S, Cartledge K, Haylock D (2014) Fabrication of free standing microporous COC membranes optimized for in vitro barrier tissue models. Sensor Actuat A Phys 215:51–55CrossRef Gel M, Kandasamy S, Cartledge K, Haylock D (2014) Fabrication of free standing microporous COC membranes optimized for in vitro barrier tissue models. Sensor Actuat A Phys 215:51–55CrossRef
go back to reference Giboz J, Copponnex T, Mele P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:96–109CrossRef Giboz J, Copponnex T, Mele P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:96–109CrossRef
go back to reference Gomez D, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Opt Eng 44:051105CrossRef Gomez D, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Opt Eng 44:051105CrossRef
go back to reference Grabowska-Jadach I, Haczyk M, Drozd M, Fischer A, Pietrzak M, Malinowska E, Brzozka Z (2016) Evaluation of biological activity of quantum dots in a microsystem. Electrophoresis 37:425–431CrossRef Grabowska-Jadach I, Haczyk M, Drozd M, Fischer A, Pietrzak M, Malinowska E, Brzozka Z (2016) Evaluation of biological activity of quantum dots in a microsystem. Electrophoresis 37:425–431CrossRef
go back to reference Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253CrossRef Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253CrossRef
go back to reference Harink B, Le Gac S, Truckenmuller R, van Blitterswijk C, Habibovic P (2013) Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab Chip 13:3512–3528CrossRef Harink B, Le Gac S, Truckenmuller R, van Blitterswijk C, Habibovic P (2013) Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab Chip 13:3512–3528CrossRef
go back to reference Hattersley SM, Sylvester DC, Dyer ChE, Stafford ND, Haswell SJ, Greenman J (2012) A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs annals of biomedical engineering. Ann Biomed Eng 40:1277–1288CrossRef Hattersley SM, Sylvester DC, Dyer ChE, Stafford ND, Haswell SJ, Greenman J (2012) A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs annals of biomedical engineering. Ann Biomed Eng 40:1277–1288CrossRef
go back to reference Hegde M, Jindal R, Bhushan A, Bale SS, McCarty WJ, Golberg I, Usta OB, Yarmush ML (2014) Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip 14:2033–2039CrossRef Hegde M, Jindal R, Bhushan A, Bale SS, McCarty WJ, Golberg I, Usta OB, Yarmush ML (2014) Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip 14:2033–2039CrossRef
go back to reference Hesari Z, Soleimani M, Atyabi F, Sharifdini M, Nadri S, Warkiani ME, Zare M, Dinarvand R (2016) A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. J Biomed Mater Res Part A 104A:1534–1543CrossRef Hesari Z, Soleimani M, Atyabi F, Sharifdini M, Nadri S, Warkiani ME, Zare M, Dinarvand R (2016) A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. J Biomed Mater Res Part A 104A:1534–1543CrossRef
go back to reference Hoefemann H, Wadlea S, Bakhtinaa N, Kondrashov V, Wangler N, Zengerle R (2012) Sorting and lysis of single cells by BubbleJet technology. Sensor Acutat B Chem 168:442–445CrossRef Hoefemann H, Wadlea S, Bakhtinaa N, Kondrashov V, Wangler N, Zengerle R (2012) Sorting and lysis of single cells by BubbleJet technology. Sensor Acutat B Chem 168:442–445CrossRef
go back to reference Hosseini SA, Zanganeh S, Akbarnejad E, Salehi F, Abdolahad M (2017) Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach suitable in urinalysis assays. J Pharmaceut Biomed 134:36–42CrossRef Hosseini SA, Zanganeh S, Akbarnejad E, Salehi F, Abdolahad M (2017) Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach suitable in urinalysis assays. J Pharmaceut Biomed 134:36–42CrossRef
go back to reference Hsieh HY, Camci-Unal G, Huang TW, Liao R, Chen TJ, Paul A, Tseng FG, Khademhosseini A (2014) Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip 14:482–493CrossRef Hsieh HY, Camci-Unal G, Huang TW, Liao R, Chen TJ, Paul A, Tseng FG, Khademhosseini A (2014) Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip 14:482–493CrossRef
go back to reference Hung MS, Chang YT (2012) Single cell lysis and DNA extending using electroporation microfluidic device. Bio Chip J 6:84–90 Hung MS, Chang YT (2012) Single cell lysis and DNA extending using electroporation microfluidic device. Bio Chip J 6:84–90
go back to reference Iliescu C, Chena B, Miaob J (2008) On the wet etching of Pyrex glass. Sensors Actuat A-Phys 143:154–161CrossRef Iliescu C, Chena B, Miaob J (2008) On the wet etching of Pyrex glass. Sensors Actuat A-Phys 143:154–161CrossRef
go back to reference Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:16505–1650516CrossRef Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:16505–1650516CrossRef
go back to reference Jang JM, Tran SHT, Na SC, Jeon NL (2015) Engineering controllable architecture in Matrigel for 3D cell alignment. ACS Appl Mater Interfaces 7:2183–2188CrossRef Jang JM, Tran SHT, Na SC, Jeon NL (2015) Engineering controllable architecture in Matrigel for 3D cell alignment. ACS Appl Mater Interfaces 7:2183–2188CrossRef
go back to reference Jastrzebska E, Bulka M, Rybicka N, Zukowski K (2015) PDT Analysis of the efficiency of photodynamic therapy using a microsystem for mono-, co- and mixed cultures. Sensor Actuat B-Chem B 221:1356–1365CrossRef Jastrzebska E, Bulka M, Rybicka N, Zukowski K (2015) PDT Analysis of the efficiency of photodynamic therapy using a microsystem for mono-, co- and mixed cultures. Sensor Actuat B-Chem B 221:1356–1365CrossRef
go back to reference Jastrzebska E, Bazylinska U, Bulka M, Tokarska K, Chudy M, Dybko A, Wilk KA, Brzozka Z (2016) Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. Biomicrofluidics 10(1):014116-1–014116-15CrossRef Jastrzebska E, Bazylinska U, Bulka M, Tokarska K, Chudy M, Dybko A, Wilk KA, Brzozka Z (2016) Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. Biomicrofluidics 10(1):014116-1–014116-15CrossRef
go back to reference Juchniewicz M, Chudy M, Brzozka Z, Dybko A (2009) Bonding-less (B-less) fabrication of polymeric microsystems. Microfluid Nanofluid 7:733–737CrossRef Juchniewicz M, Chudy M, Brzozka Z, Dybko A (2009) Bonding-less (B-less) fabrication of polymeric microsystems. Microfluid Nanofluid 7:733–737CrossRef
go back to reference Kaneda S, Ono K, Fukuba T, Nojima T, Yamamoto T, Fujii T (2012) Modification of the glass surface property in PDMS-glass hybrid microfluidic devices. Anal Sci 28:39–44CrossRef Kaneda S, Ono K, Fukuba T, Nojima T, Yamamoto T, Fujii T (2012) Modification of the glass surface property in PDMS-glass hybrid microfluidic devices. Anal Sci 28:39–44CrossRef
go back to reference Kipling GD, Haswell SJ, Brown NJ (2015) A considered approach to lab-on-a-chip fabrication. In: Svendsen WE (ed) Castillo-León Lab-on-a-Chip Devices and Micro-Total Analysis SystemsJ. Springer, Heidelberg, pp 53–82 Kipling GD, Haswell SJ, Brown NJ (2015) A considered approach to lab-on-a-chip fabrication. In: Svendsen WE (ed) Castillo-León Lab-on-a-Chip Devices and Micro-Total Analysis SystemsJ. Springer, Heidelberg, pp 53–82
go back to reference Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M, Seki M (2013) Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. J Biosci Bioeng 116:761–767CrossRef Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M, Seki M (2013) Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. J Biosci Bioeng 116:761–767CrossRef
go back to reference Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 10:3026–3042CrossRef Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 10:3026–3042CrossRef
go back to reference Kondo E, Wada KI, Hosokawa K, Maeda M (2016) Cryopreservation of adhered mammalian cells on a microfluidic device: toward ready-to-use cell-based experimental platforms. Biotechnol Bioeng 113:237–240CrossRef Kondo E, Wada KI, Hosokawa K, Maeda M (2016) Cryopreservation of adhered mammalian cells on a microfluidic device: toward ready-to-use cell-based experimental platforms. Biotechnol Bioeng 113:237–240CrossRef
go back to reference Krawczyk SK, Mazurczyk R, Bouchard A, Vieillard J, Hannes B (2007) Towards medical diagnostic chips with monolithically integrated optics in glass substrates. Phys Stat Sol 4:1581–1584CrossRef Krawczyk SK, Mazurczyk R, Bouchard A, Vieillard J, Hannes B (2007) Towards medical diagnostic chips with monolithically integrated optics in glass substrates. Phys Stat Sol 4:1581–1584CrossRef
go back to reference Kwapiszewska K, Zukowski K, Kwapiszewski R, Brzozka Z (2016) Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane). AIMS Biophysics 3:553–562CrossRef Kwapiszewska K, Zukowski K, Kwapiszewski R, Brzozka Z (2016) Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane). AIMS Biophysics 3:553–562CrossRef
go back to reference Lee KH, Lee KH, Lee J, Choi H, Lee D, Park Y, Lee SH (2014) Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration. J Biomed Mater Res A 102A:1164–1172CrossRef Lee KH, Lee KH, Lee J, Choi H, Lee D, Park Y, Lee SH (2014) Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration. J Biomed Mater Res A 102A:1164–1172CrossRef
go back to reference Lee KH, Shin SJ, Kim ChB, Kim JK, Cho YW, Chung BG, Lee SH (2010) Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10:1328–1334CrossRef Lee KH, Shin SJ, Kim ChB, Kim JK, Cho YW, Chung BG, Lee SH (2010) Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10:1328–1334CrossRef
go back to reference Leester-Schädel M, Lorenz T, Jürgens F, Richter C (2016) Fabrication of microfluidic devices. In: Dietzel A (ed) Microsystems for pharmatechnology. Springer, Heidelberg, pp 23–57CrossRef Leester-Schädel M, Lorenz T, Jürgens F, Richter C (2016) Fabrication of microfluidic devices. In: Dietzel A (ed) Microsystems for pharmatechnology. Springer, Heidelberg, pp 23–57CrossRef
go back to reference Li ChY, Stevens KR, Schwartz RE, Alejandro BS, Huang JH, Bhatia SN (2014) Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng A 20:2200–2212CrossRef Li ChY, Stevens KR, Schwartz RE, Alejandro BS, Huang JH, Bhatia SN (2014) Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng A 20:2200–2212CrossRef
go back to reference Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK (2017) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16:303–308CrossRef Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK (2017) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16:303–308CrossRef
go back to reference Liu Q, Chernish A, DuVall JA, Ouyang Y, Li J, Qian Q, Bazydlo LA, Haverstick DM, Landers JP (2016a) The ARTμS: a novel microfluidic CD4 + T-cell enumeration system for monitoring antiretroviral therapy in HIV patients. Lab Chip 16:506–514CrossRef Liu Q, Chernish A, DuVall JA, Ouyang Y, Li J, Qian Q, Bazydlo LA, Haverstick DM, Landers JP (2016a) The ARTμS: a novel microfluidic CD4 + T-cell enumeration system for monitoring antiretroviral therapy in HIV patients. Lab Chip 16:506–514CrossRef
go back to reference Liu Y, Wang S, Wang Y (2016b) Patterned fibers embedded microfluidic chips based on PLA and PDMS for Ag nanoparticle safety testing. Polymers 8:1–16 Liu Y, Wang S, Wang Y (2016b) Patterned fibers embedded microfluidic chips based on PLA and PDMS for Ag nanoparticle safety testing. Polymers 8:1–16
go back to reference Lou X, Kim G, Yoon HK, Lee YE, Kopelman R, Yoon E (2014) A high-throughput photodynamic therapy screening platform with on-chip control of multiple microenvironmental factors. Lab Chip 14:892–901CrossRef Lou X, Kim G, Yoon HK, Lee YE, Kopelman R, Yoon E (2014) A high-throughput photodynamic therapy screening platform with on-chip control of multiple microenvironmental factors. Lab Chip 14:892–901CrossRef
go back to reference Love JC, Wolfe DB, Jacobs HO, Whitesides GM (2001) Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir 17:6005–6012CrossRef Love JC, Wolfe DB, Jacobs HO, Whitesides GM (2001) Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir 17:6005–6012CrossRef
go back to reference Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomed 8:337–350CrossRef Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomed 8:337–350CrossRef
go back to reference Mair DA, Geiger E, Pisano AP, Frechet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354CrossRef Mair DA, Geiger E, Pisano AP, Frechet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6:1346–1354CrossRef
go back to reference Markov DA, Lu JQ, Samson PC, Wikswo JP, McCawley LJ (2012) Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery. Lab Chip 12:4560–4568CrossRef Markov DA, Lu JQ, Samson PC, Wikswo JP, McCawley LJ (2012) Thick-tissue bioreactor as a platform for long-term organotypic culture and drug delivery. Lab Chip 12:4560–4568CrossRef
go back to reference Massey LK (2003) Permeability properties of plastics and elastomers: a guide to packaging and barrier materials, 2nd edn. William Andrew Publishing, New York, pp 177–499CrossRef Massey LK (2003) Permeability properties of plastics and elastomers: a guide to packaging and barrier materials, 2nd edn. William Andrew Publishing, New York, pp 177–499CrossRef
go back to reference McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef
go back to reference McDonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices using solid—object printing. Anal Chem 74:1537–1545CrossRef McDonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices using solid—object printing. Anal Chem 74:1537–1545CrossRef
go back to reference McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef
go back to reference McKeen L (2016) Permeability properties of plastics and elastomers, 4th edn. William Andrew Inc, Kidlington, p 202 McKeen L (2016) Permeability properties of plastics and elastomers, 4th edn. William Andrew Inc, Kidlington, p 202
go back to reference Moreno-Arotzena O, Borau C, Movilla N, Vicente-Manzanares M, García-Aznar JM (2015) Fibroblast migration in 3D is controlled by Haptotaxis in a non-muscle myosin II-dependent manner. Ann Biomed Eng 43:3025–3039CrossRef Moreno-Arotzena O, Borau C, Movilla N, Vicente-Manzanares M, García-Aznar JM (2015) Fibroblast migration in 3D is controlled by Haptotaxis in a non-muscle myosin II-dependent manner. Ann Biomed Eng 43:3025–3039CrossRef
go back to reference Nakayama H, Kimura H, Fujii T, Sakai Y (2014) Image-based evaluations of distribution and cytotoxicity of Irinotecan (CPT-11) in a multi-compartment micro-cell coculture device. J Biosci Bioeng 117:756–762CrossRef Nakayama H, Kimura H, Fujii T, Sakai Y (2014) Image-based evaluations of distribution and cytotoxicity of Irinotecan (CPT-11) in a multi-compartment micro-cell coculture device. J Biosci Bioeng 117:756–762CrossRef
go back to reference Ni M, Tong WH, Choudhury D, Rahim NAA, Iliescu C, Hanry YuH (2009) Cell culture on MEMS platforms: a review. Int J Mol Sci 10:5411–5441CrossRef Ni M, Tong WH, Choudhury D, Rahim NAA, Iliescu C, Hanry YuH (2009) Cell culture on MEMS platforms: a review. Int J Mol Sci 10:5411–5441CrossRef
go back to reference Nieto D, Couceiro R, Aymerich M, Lopez-Lopez R, Abal M, Flores-Arias MT (2015) A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumor cell capture. Colloid Surf B 134:363–369CrossRef Nieto D, Couceiro R, Aymerich M, Lopez-Lopez R, Abal M, Flores-Arias MT (2015) A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumor cell capture. Colloid Surf B 134:363–369CrossRef
go back to reference Noori A, Upadhyaya S, Selvaganapathy PR (2008) Microfluidics for biological applications. In: Tian WT, Finehout E (eds) Springer, New York, p 49 Noori A, Upadhyaya S, Selvaganapathy PR (2008) Microfluidics for biological applications. In: Tian WT, Finehout E (eds) Springer, New York, p 49
go back to reference Ogonczyk D, Wegrzyn J, Jankowski P, Dąbrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRef Ogonczyk D, Wegrzyn J, Jankowski P, Dąbrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRef
go back to reference Pagano G, Ventre M, Iannone M, Greco F, Maffettone PL, Netti PA (2014) Optimizing design and fabrication of microfluidic devices for cell cultures: an effective approach to control cell microenvironment in three dimensions. Biomicrofluidics 8:046503CrossRef Pagano G, Ventre M, Iannone M, Greco F, Maffettone PL, Netti PA (2014) Optimizing design and fabrication of microfluidic devices for cell cultures: an effective approach to control cell microenvironment in three dimensions. Biomicrofluidics 8:046503CrossRef
go back to reference Park J, Lee NE, Lee J, Park JS, Park HD (2005) Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas. Microelectr Eng 82:119–128CrossRef Park J, Lee NE, Lee J, Park JS, Park HD (2005) Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas. Microelectr Eng 82:119–128CrossRef
go back to reference Pemg BY, Chih WW, Shen YK, Lin Y (2009) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 21:457–466CrossRef Pemg BY, Chih WW, Shen YK, Lin Y (2009) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 21:457–466CrossRef
go back to reference Petersen KM (1982) Silicon as a mechanical material. Proc IEEE 70:420–457CrossRef Petersen KM (1982) Silicon as a mechanical material. Proc IEEE 70:420–457CrossRef
go back to reference Ramaiahgari SC, Den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, Price LS (2014) A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 88:1083–1095 Ramaiahgari SC, Den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, Price LS (2014) A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 88:1083–1095
go back to reference Rigat-Brugarolas LG, Homs-Corberaab A, Samitier J (2015) Highly hydrophilic microfluidic device prototyping using a novel poly(dimethylsiloxane)-based polymeric mix. RSC Adv 5:7423–7425CrossRef Rigat-Brugarolas LG, Homs-Corberaab A, Samitier J (2015) Highly hydrophilic microfluidic device prototyping using a novel poly(dimethylsiloxane)-based polymeric mix. RSC Adv 5:7423–7425CrossRef
go back to reference Rodriguez I, Spicar-Mihalic P, Kuyper ChL, Fiorini GS, Chiu DT (2003) Rapid prototyping of glass microchannels. Anal Chim Acta 496:205–215CrossRef Rodriguez I, Spicar-Mihalic P, Kuyper ChL, Fiorini GS, Chiu DT (2003) Rapid prototyping of glass microchannels. Anal Chim Acta 496:205–215CrossRef
go back to reference Rodriguez-Rodriguez R, Munoz-Berbel X, Demming S, Buttgenbach S, Herrera MD, Llobera A (2012) Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells. Biomed Microdevices 14:1129–1140CrossRef Rodriguez-Rodriguez R, Munoz-Berbel X, Demming S, Buttgenbach S, Herrera MD, Llobera A (2012) Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells. Biomed Microdevices 14:1129–1140CrossRef
go back to reference Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45053CrossRef Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45053CrossRef
go back to reference Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16:497–505CrossRef Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16:497–505CrossRef
go back to reference Sakamoto S, Okeyo KO, Yamazaki S, Kurosawa O, Oana H, Kotera H, Washizu M (2016) Adhesion patterning by a novel air-lock technique enables localization and in-situ real-time imaging of reprogramming events in one-to-one electrofused hybrids. Biomicrofluidics 10:054122CrossRef Sakamoto S, Okeyo KO, Yamazaki S, Kurosawa O, Oana H, Kotera H, Washizu M (2016) Adhesion patterning by a novel air-lock technique enables localization and in-situ real-time imaging of reprogramming events in one-to-one electrofused hybrids. Biomicrofluidics 10:054122CrossRef
go back to reference Sasaki DY, Jimmy D, Follstaedt SC, Curry MS, Skirboll S, Gourley PL (2001) Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure. Proc SPIE 4265:152–163CrossRef Sasaki DY, Jimmy D, Follstaedt SC, Curry MS, Skirboll S, Gourley PL (2001) Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure. Proc SPIE 4265:152–163CrossRef
go back to reference Schepers A, Li Ch, Chhabra A, Seney BT, Bhatia S (2016) Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip 5:2644–2653CrossRef Schepers A, Li Ch, Chhabra A, Seney BT, Bhatia S (2016) Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip 5:2644–2653CrossRef
go back to reference Schlautmann S, Wensink H, Schasfoort R, Elwenspoek M, van den Berg A (2001) Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors. J Micromech Microeng 11:386–389CrossRef Schlautmann S, Wensink H, Schasfoort R, Elwenspoek M, van den Berg A (2001) Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors. J Micromech Microeng 11:386–389CrossRef
go back to reference Schmidt MA (1998) Wafer-to-wafer bonding for microstructure formation. Proc IEEE 86:1575–1585CrossRef Schmidt MA (1998) Wafer-to-wafer bonding for microstructure formation. Proc IEEE 86:1575–1585CrossRef
go back to reference Shaw JM, Gelorme J, LaBianca NC, Conley WE, Holmes SJ (1997) Negative photoresists for optical lithography. IBM J Res Dev 41:81–94CrossRef Shaw JM, Gelorme J, LaBianca NC, Conley WE, Holmes SJ (1997) Negative photoresists for optical lithography. IBM J Res Dev 41:81–94CrossRef
go back to reference Shin MK, Kim SK, Jung H (2011) Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11:3880–3887CrossRef Shin MK, Kim SK, Jung H (2011) Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11:3880–3887CrossRef
go back to reference Song HH, Park KM, Gerecht S (2014) Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 79–80:19–20CrossRef Song HH, Park KM, Gerecht S (2014) Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 79–80:19–20CrossRef
go back to reference Song H, Rosano JM, Wang Y, Garson CJ, Prabhakarpandian B, Pant K, Klarmann GJ, Perantoni A, Alvarez LM, Lai E (2015) Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip 15:1320–1328CrossRef Song H, Rosano JM, Wang Y, Garson CJ, Prabhakarpandian B, Pant K, Klarmann GJ, Perantoni A, Alvarez LM, Lai E (2015) Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip 15:1320–1328CrossRef
go back to reference Stangegaard M, Petronis S, Jørgensen AM, Christensen CB, Dufva M (2006) A biocompatible micro cell culture chamber (mCCC) for the culturing and on-line monitoring of eukaryote cells. Lab Chip 6:1045–1051CrossRef Stangegaard M, Petronis S, Jørgensen AM, Christensen CB, Dufva M (2006) A biocompatible micro cell culture chamber (mCCC) for the culturing and on-line monitoring of eukaryote cells. Lab Chip 6:1045–1051CrossRef
go back to reference Sun D, Lu J, Chen Z, Yu Y, Li Y (2014) A novel three-dimensional microfluidic platform for on chip multicellular tumor spheroid formation and culture. Microfluid Nanofluid 17:831–842CrossRef Sun D, Lu J, Chen Z, Yu Y, Li Y (2014) A novel three-dimensional microfluidic platform for on chip multicellular tumor spheroid formation and culture. Microfluid Nanofluid 17:831–842CrossRef
go back to reference Sunkara V, Park DK, Hwang H, Chantiwas R, Soper SA, Cho YK (2011) Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 11:962–965CrossRef Sunkara V, Park DK, Hwang H, Chantiwas R, Soper SA, Cho YK (2011) Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 11:962–965CrossRef
go back to reference Tan W, Desai T (2003) Microfluidic patterning of cellular biopolymer matrices for biomimetic 3-D structures. Biomed Microdevices 5:235–244CrossRef Tan W, Desai T (2003) Microfluidic patterning of cellular biopolymer matrices for biomimetic 3-D structures. Biomed Microdevices 5:235–244CrossRef
go back to reference Tazawa H, Sunaoshi S, Tokeshi M, Kitamori T, Ohtani-Kaneko R (2016) An easy-to-use polystyrene microchip-based cell culture system. Anal Sci 32:349–353CrossRef Tazawa H, Sunaoshi S, Tokeshi M, Kitamori T, Ohtani-Kaneko R (2016) An easy-to-use polystyrene microchip-based cell culture system. Anal Sci 32:349–353CrossRef
go back to reference Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng, C 75:305–316CrossRef Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng, C 75:305–316CrossRef
go back to reference Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Brzozka Z (2018) Microsystem with micropillar array for three-(gel-embedded) and two-dimensional cardiac cell culture. Sensor Actuat B-Chem B 254:973–983CrossRef Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Brzozka Z (2018) Microsystem with micropillar array for three-(gel-embedded) and two-dimensional cardiac cell culture. Sensor Actuat B-Chem B 254:973–983CrossRef
go back to reference Trkov S, Eng G, Liddo R, Parnigotto PP, Vunjak-Novakovic G (2010) Micropatterned 3-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. J Tissue Eng Regen Med 4:205–215CrossRef Trkov S, Eng G, Liddo R, Parnigotto PP, Vunjak-Novakovic G (2010) Micropatterned 3-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. J Tissue Eng Regen Med 4:205–215CrossRef
go back to reference Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505CrossRef Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505CrossRef
go back to reference Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16CrossRef Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16CrossRef
go back to reference Van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotech 35:118–126CrossRef Van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotech 35:118–126CrossRef
go back to reference Van Midwoud PM (2012) An alternative approach based on microfluidics to study drug metabolism and toxicity using liver and intestinal tissue. Anal Chem 84:3938–3944CrossRef Van Midwoud PM (2012) An alternative approach based on microfluidics to study drug metabolism and toxicity using liver and intestinal tissue. Anal Chem 84:3938–3944CrossRef
go back to reference Verbridge SS, Chakrabarti A, Nero PD, Kwee B, Varner JD, Stroock AD, Fischbach C (2013) Physicochemical regulation of endothelial sproutingin a 3-D microfluidic angiogenesis model. J Biomed Mater Res A 101:2948–2956CrossRef Verbridge SS, Chakrabarti A, Nero PD, Kwee B, Varner JD, Stroock AD, Fischbach C (2013) Physicochemical regulation of endothelial sproutingin a 3-D microfluidic angiogenesis model. J Biomed Mater Res A 101:2948–2956CrossRef
go back to reference Vereshchagina E, Mc Glade D, Glynn M, Ducree J (2013) A hybrid microfluidic platform for cell-based assays via diffusive and convective trans-membrane perfusion. Biomicrofluidics 7:034101CrossRef Vereshchagina E, Mc Glade D, Glynn M, Ducree J (2013) A hybrid microfluidic platform for cell-based assays via diffusive and convective trans-membrane perfusion. Biomicrofluidics 7:034101CrossRef
go back to reference Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35:1816–1832CrossRef Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35:1816–1832CrossRef
go back to reference Wang Z, Liu Z, Li L, Liang Q (2015) Investigation into the hypoxia-dependent cytotoxicity of anticancer drugs under oxygen gradient in a microfluidic device. Microfluid Nanofluid 19:1271–1279CrossRef Wang Z, Liu Z, Li L, Liang Q (2015) Investigation into the hypoxia-dependent cytotoxicity of anticancer drugs under oxygen gradient in a microfluidic device. Microfluid Nanofluid 19:1271–1279CrossRef
go back to reference Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G, Wego M, Ehret R, Urban GA (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–146CrossRef Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G, Wego M, Ehret R, Urban GA (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–146CrossRef
go back to reference Whisler JA, Chen MB, Kamm RD (2014) Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng C 20:543–552CrossRef Whisler JA, Chen MB, Kamm RD (2014) Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng C 20:543–552CrossRef
go back to reference Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamato M, Okano T, Seki M (2012) Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33:8304–8315CrossRef Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamato M, Okano T, Seki M (2012) Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33:8304–8315CrossRef
go back to reference Yang Y, Chen Y, Wei Y, Li Y (2016) 3D printing of shape memory polymer for functional part fabrication. Int J Adv Manuf Tech 84:2079–2095CrossRef Yang Y, Chen Y, Wei Y, Li Y (2016) 3D printing of shape memory polymer for functional part fabrication. Int J Adv Manuf Tech 84:2079–2095CrossRef
go back to reference Yazdi AA, Popma A, Wong W, Nguyen T, Yayue P, Xu J (2016) 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20:50CrossRef Yazdi AA, Popma A, Wong W, Nguyen T, Yayue P, Xu J (2016) 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20:50CrossRef
go back to reference Young EWK, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid Prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83:1408–1417CrossRef Young EWK, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ (2011) Rapid Prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 83:1408–1417CrossRef
go back to reference Yu IF, Yu YH, Chen LY, Fan SK, Chou HY, Yang JT (2014) A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip 14:3621–3628CrossRef Yu IF, Yu YH, Chen LY, Fan SK, Chou HY, Yang JT (2014) A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip 14:3621–3628CrossRef
go back to reference Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271CrossRef Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271CrossRef
go back to reference Zanotelli MR, Ardalani H, Zhang J, Hou Z, Nguyen EH, Swanson S, Nguyen BK, Bolin J, Elwell A, Bischel LL, Xie AW, Stewart R, Beebe DJ, Thomson JA, Schwartz MP, Murphy WL (2016) Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomater 35:32–41CrossRef Zanotelli MR, Ardalani H, Zhang J, Hou Z, Nguyen EH, Swanson S, Nguyen BK, Bolin J, Elwell A, Bischel LL, Xie AW, Stewart R, Beebe DJ, Thomson JA, Schwartz MP, Murphy WL (2016) Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomater 35:32–41CrossRef
go back to reference Zhong W, Zhang W, Wang S, Qin J (2013) Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS ONE 8:1–13 Zhong W, Zhang W, Wang S, Qin J (2013) Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS ONE 8:1–13
go back to reference Ziolkowska K, Kwapiszewski R, Brzozka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35:979–990CrossRef Ziolkowska K, Kwapiszewski R, Brzozka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35:979–990CrossRef
go back to reference Ziolkowska K, Kwapiszewski R, Stelmachowska A, Chudy M, Dybko A, Brzozka Z (2012) Development of a three-dimensional microfluidic system for long-term tumor spheroid culture. Sensor Actuat B-Chem 173:908–913CrossRef Ziolkowska K, Kwapiszewski R, Stelmachowska A, Chudy M, Dybko A, Brzozka Z (2012) Development of a three-dimensional microfluidic system for long-term tumor spheroid culture. Sensor Actuat B-Chem 173:908–913CrossRef
go back to reference Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z (2016) Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 37:537–544CrossRef Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z (2016) Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 37:537–544CrossRef
Metadata
Title
Lab-on-a-chip Systems for Cellomics—Materials and Technology
Authors
Dominika Kalinowska
Katarzyna Tokarska
Ilona Grabowska-Jadach
Artur Dybko
Zbigniew Brzozka
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-70685-6_3