Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

14-03-2024 | Original Research Article

Magnetic Properties and Magnetocaloric Effect in Tb2FeCrO6 Double Perovskite Oxide

Authors: Silu Huang, Junli Lin, Yongyun Shu, Yikun Zhang

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we fabricated a polycrystalline Tb2FeCrO6 double perovskite (DP) oxide by a solid-state reaction method and determined its structural, magnetic, and magnetocaloric (MC) properties. The Tb2FeCrO6 DP oxide was found to crystallize in a DP-type structure with the Pbnm space group and to undergo a paramagnetic-to-antiferromagnetic transition at a temperature of ~ 8.5 K. A large low-temperature MC effect was observed in the Tb2FeCrO6 DP oxide. The MC parameters in terms of maximum magnetic entropy changes, temperature-averaged entropy change (5 K), and relative cooling power for Tb2FeCrO6 DP oxide under a magnetic field change of 0–7 T were 12.9 J/kg K, 12.7 J/kg K, and 341.4 J/kg, respectively. These parameters were consistent with similarly high levels in recently updated MC materials, making the material a suitable candidate for low-temperature magnetic cooling applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019).CrossRef T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019).CrossRef
2.
go back to reference J.Y. Law, L.M. Moreno-Ramírez, Á. Díaz-García, and V. Franco, Current perspective in magnetocaloric materials research. J. Appl. Phys. 133, 040903 (2023).CrossRef J.Y. Law, L.M. Moreno-Ramírez, Á. Díaz-García, and V. Franco, Current perspective in magnetocaloric materials research. J. Appl. Phys. 133, 040903 (2023).CrossRef
3.
go back to reference Y.K. Zhang, W.X. Hao, C.L. Hu, X. Wang, X.F. Zhang, and L.W. Li, Rare-earth-free Mn30Fe20−xCuxAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Funct. Mater. 33, 2310047 (2023).CrossRef Y.K. Zhang, W.X. Hao, C.L. Hu, X. Wang, X.F. Zhang, and L.W. Li, Rare-earth-free Mn30Fe20xCuxAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Funct. Mater. 33, 2310047 (2023).CrossRef
4.
go back to reference D.Y. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, and Y.D. Wang, Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti Alloys. Phys. Rev. Lett. 122, 255703 (2019).PubMedCrossRef D.Y. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, and Y.D. Wang, Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti Alloys. Phys. Rev. Lett. 122, 255703 (2019).PubMedCrossRef
5.
go back to reference B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J. Wang, Y. Chen, S.I. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D. Yu, R. Mole, T. Hattori, T. Kikuchi, S. Yano, Z. Zhang, Z. Zhang, W. Ren, S. Lin, O. Sakata, K. Nakajima, and Z.D. Zhang, Colossal barocaloric effects in plastic crystals. Nature 567, 506 (2019).PubMedCrossRef B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J. Wang, Y. Chen, S.I. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D. Yu, R. Mole, T. Hattori, T. Kikuchi, S. Yano, Z. Zhang, Z. Zhang, W. Ren, S. Lin, O. Sakata, K. Nakajima, and Z.D. Zhang, Colossal barocaloric effects in plastic crystals. Nature 567, 506 (2019).PubMedCrossRef
6.
go back to reference J.C. Lin, P. Tong, X.K. Zhang, Z.C. Wang, Z. Zhang, B. Li, G.H. Zhong, J. Chen, Y.D. Wu, H.L. Lu, L.H. He, B. Bai, L.S. Lin, W.H. Song, Z.D. Zhang, and Y.P. Sun, Giant room-temperature barocaloric effect at the electronic phase transition in Ni1−xFexS. Mater. Horiz. 7, 2690 (2020).CrossRef J.C. Lin, P. Tong, X.K. Zhang, Z.C. Wang, Z. Zhang, B. Li, G.H. Zhong, J. Chen, Y.D. Wu, H.L. Lu, L.H. He, B. Bai, L.S. Lin, W.H. Song, Z.D. Zhang, and Y.P. Sun, Giant room-temperature barocaloric effect at the electronic phase transition in Ni1−xFexS. Mater. Horiz. 7, 2690 (2020).CrossRef
7.
go back to reference J. Lin, P. Tong, K. Zhang, W. Lu, X. Wang, X. Zhang, W. Song, and Y. Sun, Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes. Nat. Commun. 12, 596 (2022).CrossRef J. Lin, P. Tong, K. Zhang, W. Lu, X. Wang, X. Zhang, W. Song, and Y. Sun, Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes. Nat. Commun. 12, 596 (2022).CrossRef
8.
go back to reference Z.P. Ma, X.S. Dong, Z.Q. Zhang, and L.W. Li, Achievement of promising cryogenic magnetocaloric performances in La1−xPrxFe12B6 compounds. J. Mater. Sci. Technol. 92, 138–142 (2021).CrossRef Z.P. Ma, X.S. Dong, Z.Q. Zhang, and L.W. Li, Achievement of promising cryogenic magnetocaloric performances in La1xPrxFe12B6 compounds. J. Mater. Sci. Technol. 92, 138–142 (2021).CrossRef
9.
go back to reference J.Y. Law, and V. Franco, Pushing the limits of magnetocaloric high-entropy alloys. APL Mater. 9, 080702 (2021).CrossRef J.Y. Law, and V. Franco, Pushing the limits of magnetocaloric high-entropy alloys. APL Mater. 9, 080702 (2021).CrossRef
10.
go back to reference Q. Shen, I. Batashev, F. Zhang, H. Ojiyed, I. Dugulan, N. van Dijk, and E. Brück, Exploring the negative thermal expansion and magnetocaloric effect in Fe2(Hf, Ti) Laves phase materials. Acta Mater. 257, 119149 (2023).CrossRef Q. Shen, I. Batashev, F. Zhang, H. Ojiyed, I. Dugulan, N. van Dijk, and E. Brück, Exploring the negative thermal expansion and magnetocaloric effect in Fe2(Hf, Ti) Laves phase materials. Acta Mater. 257, 119149 (2023).CrossRef
11.
go back to reference Y.K. Zhang, P. Xu, J. Zhu, S.M. Yan, J.C. Zhang, and L.W. Li, The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys. Mater. Today Phys. 32, 101031 (2023).CrossRef Y.K. Zhang, P. Xu, J. Zhu, S.M. Yan, J.C. Zhang, and L.W. Li, The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys. Mater. Today Phys. 32, 101031 (2023).CrossRef
12.
go back to reference G. Yao, B. Liu, Q. Wang, W. Cui, and S. Yang, Magnetic transition and magnetocaloric effect of Gd (Ga, X) (X = Al, Si) alloys. J. Electron. Mater. 5, 23742 (2023). G. Yao, B. Liu, Q. Wang, W. Cui, and S. Yang, Magnetic transition and magnetocaloric effect of Gd (Ga, X) (X = Al, Si) alloys. J. Electron. Mater. 5, 23742 (2023).
13.
go back to reference Z. Guan, J. Bai, Y. Zhang, J. Gu, N. Morley, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Ni-Co-Mn-Ti-B high performance multiferroic phase transformation material: simultaneous modulation of mechanical properties and successive caloric effects by B doping. Mater. Today Phys. 36, 101183 (2023).CrossRef Z. Guan, J. Bai, Y. Zhang, J. Gu, N. Morley, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Ni-Co-Mn-Ti-B high performance multiferroic phase transformation material: simultaneous modulation of mechanical properties and successive caloric effects by B doping. Mater. Today Phys. 36, 101183 (2023).CrossRef
14.
go back to reference Y.K. Zhang, W.X. Hao, J. Shen, Z. Mo, T. Gottschall, and L.W. Li, Investigation of the structural and magnetic properties in the GdCoC compound featuring excellent cryogenic magnetocaloric performances. Acta Mater. (2024), in press. Y.K. Zhang, W.X. Hao, J. Shen, Z. Mo, T. Gottschall, and L.W. Li, Investigation of the structural and magnetic properties in the GdCoC compound featuring excellent cryogenic magnetocaloric performances. Acta Mater. (2024), in press.
15.
go back to reference Y. Zhang, B. Wu, D. Guo, J. Wang, and Z. Ren, Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons. Chin. Phys. B 30, 017501 (2021).CrossRef Y. Zhang, B. Wu, D. Guo, J. Wang, and Z. Ren, Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons. Chin. Phys. B 30, 017501 (2021).CrossRef
16.
go back to reference W. Zhang, Z. Xie, Z. Zou, X. Jiang, C. Xu, and M. Feng, Eu/Ni doping on the structure, magnetocaloric effect and critical behaviour of La0.65Sr0.35MnO3 ceramics. Ceram. Int. 50, 4291 (2024). W. Zhang, Z. Xie, Z. Zou, X. Jiang, C. Xu, and M. Feng, Eu/Ni doping on the structure, magnetocaloric effect and critical behaviour of La0.65Sr0.35MnO3 ceramics. Ceram. Int. 50, 4291 (2024).
17.
go back to reference X. Jiang, Z. Zou, B. He, W. Zhang, and Z. Mao, Large magnetocaloric effect of Sm3+-doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) manganites near room temperature. J. Electron. Mater. 52, 4587 (2023).CrossRef X. Jiang, Z. Zou, B. He, W. Zhang, and Z. Mao, Large magnetocaloric effect of Sm3+-doped La0.7Sr0.3–xSmxMn0.95Ni0.05O3(x = 0, 0.05, 0.10, 0.15) manganites near room temperature. J. Electron. Mater. 52, 4587 (2023).CrossRef
18.
go back to reference L.W. Li, and M. Yan, Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. J. Alloy. Compd. 823, 153810 (2020).CrossRef L.W. Li, and M. Yan, Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. J. Alloy. Compd. 823, 153810 (2020).CrossRef
19.
go back to reference J.W. Xu, X.Q. Zheng, L. Xi, X. Kan, B. Bao, T. Ma, Y. Zang, D. Wang, Y. Gao, J. Xu, W. Yin, B.G. Shen, and S.G. Wang, Significant enhancement of magnetocaloric effects via tuning Curie temperature and magnetic anisotropy in rare-earth based compounds. Appl. Mater. Today 35, 101982 (2023).CrossRef J.W. Xu, X.Q. Zheng, L. Xi, X. Kan, B. Bao, T. Ma, Y. Zang, D. Wang, Y. Gao, J. Xu, W. Yin, B.G. Shen, and S.G. Wang, Significant enhancement of magnetocaloric effects via tuning Curie temperature and magnetic anisotropy in rare-earth based compounds. Appl. Mater. Today 35, 101982 (2023).CrossRef
20.
go back to reference Y.K. Zhang, J.Y. Ying, X.Q. Gao, Z.J. Mo, J. Shen, and L.W. Li, Exploration of the rare-earth cobalt nickel-based magnetocaloric materials for hydrogen liquefaction. J. Mater. Sci. Technol. 159, 163 (2023).CrossRef Y.K. Zhang, J.Y. Ying, X.Q. Gao, Z.J. Mo, J. Shen, and L.W. Li, Exploration of the rare-earth cobalt nickel-based magnetocaloric materials for hydrogen liquefaction. J. Mater. Sci. Technol. 159, 163 (2023).CrossRef
21.
go back to reference Z. Ma, P. Xu, J. Ying, Y. Zhang, and L. Li, Insight into the structural and magnetic properties of RECo12B6 (RE = Ce, Pr, Nd) compounds: a combined experimental and theoretical investigation. Acta Mater. 247, 118757 (2023).CrossRef Z. Ma, P. Xu, J. Ying, Y. Zhang, and L. Li, Insight into the structural and magnetic properties of RECo12B6 (RE = Ce, Pr, Nd) compounds: a combined experimental and theoretical investigation. Acta Mater. 247, 118757 (2023).CrossRef
22.
go back to reference X. Wang, L.F. Wang, N.L. Gulay, L.W. Li, and R. Pottgen, Magnetic phase transition and magnetocaloric effect of RE2RuIn (RE = Dy, Ho, Er, Tm). J. Magn. Magn. Mater. 589, 171406 (2024).CrossRef X. Wang, L.F. Wang, N.L. Gulay, L.W. Li, and R. Pottgen, Magnetic phase transition and magnetocaloric effect of RE2RuIn (RE = Dy, Ho, Er, Tm). J. Magn. Magn. Mater. 589, 171406 (2024).CrossRef
23.
go back to reference Y.K. Zhang, N.Z. He, Z.Q. Zhang, and X. Wang, Structural, magnetic and magnetocaloric properties of the rare earth (RE) molybdate RE2MoO6 (RE = Dy, Tb and Gd) oxides. Ceram. Int. 483, 1672 (2022). Y.K. Zhang, N.Z. He, Z.Q. Zhang, and X. Wang, Structural, magnetic and magnetocaloric properties of the rare earth (RE) molybdate RE2MoO6 (RE = Dy, Tb and Gd) oxides. Ceram. Int. 483, 1672 (2022).
24.
go back to reference N. He, P. Wang, J. Huang, X. Wang, Y. Zhang, L. Hu, L. Li, and M. Yan, Structural, magnetic and magnetocaloric properties in the rare earth ruthenate RE3RuO7 (RE = Pr, Nd, Gd and Tb) oxides with fluorite related structure. Ceram. Int. 48, 36968 (2022).CrossRef N. He, P. Wang, J. Huang, X. Wang, Y. Zhang, L. Hu, L. Li, and M. Yan, Structural, magnetic and magnetocaloric properties in the rare earth ruthenate RE3RuO7 (RE = Pr, Nd, Gd and Tb) oxides with fluorite related structure. Ceram. Int. 48, 36968 (2022).CrossRef
25.
go back to reference X. Wang, Y. Ma, and Z. Zhang, Magnetic properties and magnetocaloric effect (MCE) in the rare-earths (RE) based RECu2Si2 (RE = Nd and Pr) compounds. Solid State Commun. 345, 114696 (2022).CrossRef X. Wang, Y. Ma, and Z. Zhang, Magnetic properties and magnetocaloric effect (MCE) in the rare-earths (RE) based RECu2Si2 (RE = Nd and Pr) compounds. Solid State Commun. 345, 114696 (2022).CrossRef
26.
go back to reference X. Wang, Y. Ma, and Z. Zhang, Structural and cryogenic magnetic properties of the ternary RECu2Ge2 (RE = Pr and Nd) compounds. J. Electron. Mater. 51, 5664 (2022).CrossRef X. Wang, Y. Ma, and Z. Zhang, Structural and cryogenic magnetic properties of the ternary RECu2Ge2 (RE = Pr and Nd) compounds. J. Electron. Mater. 51, 5664 (2022).CrossRef
27.
go back to reference P. Xu, X. Jin, R. Xing, J. Zhao, and L. Li, Magnetic and magnetocaloric properties in Sr2RETaO6 (RE = Dy, Ho, and Er) compounds. J. Electro. Mater. 51, 6525 (2022).CrossRef P. Xu, X. Jin, R. Xing, J. Zhao, and L. Li, Magnetic and magnetocaloric properties in Sr2RETaO6 (RE = Dy, Ho, and Er) compounds. J. Electro. Mater. 51, 6525 (2022).CrossRef
28.
go back to reference A. Hossain, P. Bandyopadhyay, and S. Roy, An overview of double perovskites A2B′B″O6 with small ions at A site: synthesis, structure and magnetic properties. J. Alloy. Compd. 740, 414 (2018).CrossRef A. Hossain, P. Bandyopadhyay, and S. Roy, An overview of double perovskites A2B′B″O6 with small ions at A site: synthesis, structure and magnetic properties. J. Alloy. Compd. 740, 414 (2018).CrossRef
29.
go back to reference W.J. Yin, B.C. Weng, J. Ge, Q.D. Sun, Z.Z. Li, and Y.F. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12, 442 (2019).CrossRef W.J. Yin, B.C. Weng, J. Ge, Q.D. Sun, Z.Z. Li, and Y.F. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 12, 442 (2019).CrossRef
30.
go back to reference P. Xu, Z.P. Ma, P. Wang, H. Wang, and L.W. Li, Excellent cryogenic magnetocaloric performances in ferromagnetic Sr2GdNbO6 double perovskite compound. Mater. Today Phys. 20, 100470 (2021).CrossRef P. Xu, Z.P. Ma, P. Wang, H. Wang, and L.W. Li, Excellent cryogenic magnetocaloric performances in ferromagnetic Sr2GdNbO6 double perovskite compound. Mater. Today Phys. 20, 100470 (2021).CrossRef
31.
go back to reference L.W. Li, and M. Yan, Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. J. Mater. Sci. Technol. 136, 1–12 (2023).CrossRef L.W. Li, and M. Yan, Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. J. Mater. Sci. Technol. 136, 1–12 (2023).CrossRef
32.
go back to reference Y.K. Zhang, B. Zhang, S. Li, J. Zhu, B. Wu, J. Wang, and Z. Ren, Cryogenic magnetic properties and magnetocaloric effects (MCE) in B-site disordered RE2CuMnO6 (RE = Gd, Dy, Ho and Er) double perovskites (DP) compounds. Ceram. Int. 47, 18205 (2021).CrossRef Y.K. Zhang, B. Zhang, S. Li, J. Zhu, B. Wu, J. Wang, and Z. Ren, Cryogenic magnetic properties and magnetocaloric effects (MCE) in B-site disordered RE2CuMnO6 (RE = Gd, Dy, Ho and Er) double perovskites (DP) compounds. Ceram. Int. 47, 18205 (2021).CrossRef
33.
go back to reference B.B. Wu, Y.K. Zhang, D. Guo, J. Wang, and Z. Ren, Structure, magnetic properties and cryogenic magneto-caloric effect (MCE) in RE2FeAlO6 (RE = Gd, Dy, Ho) oxides. Ceram. Int. 46, 6290 (2021).CrossRef B.B. Wu, Y.K. Zhang, D. Guo, J. Wang, and Z. Ren, Structure, magnetic properties and cryogenic magneto-caloric effect (MCE) in RE2FeAlO6 (RE = Gd, Dy, Ho) oxides. Ceram. Int. 46, 6290 (2021).CrossRef
34.
go back to reference B. Wu, D. Guo, Y. Wang, and Y. Zhang, Crystal structure, magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE = Ho and Er) perovskites. Ceram. Int. 46, 11988–11993 (2020).CrossRef B. Wu, D. Guo, Y. Wang, and Y. Zhang, Crystal structure, magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE = Ho and Er) perovskites. Ceram. Int. 46, 11988–11993 (2020).CrossRef
35.
go back to reference Y.K. Zhang, Y. Tian, Z. Zhang, Y. Jia, S. Li, B. Zhang, J. Wang, and Z. Ren, Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater. 226, 117669 (2022).CrossRef Y.K. Zhang, Y. Tian, Z. Zhang, Y. Jia, S. Li, B. Zhang, J. Wang, and Z. Ren, Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater. 226, 117669 (2022).CrossRef
36.
go back to reference Z. Zhang, P. Xu, Y. Jia, and L. Li, Structural, magnetic and magnetocaloric properties in distorted RE2NiTiO6 double perovskite compounds. J. Phys. Energy 5, 014017 (2023).CrossRef Z. Zhang, P. Xu, Y. Jia, and L. Li, Structural, magnetic and magnetocaloric properties in distorted RE2NiTiO6 double perovskite compounds. J. Phys. Energy 5, 014017 (2023).CrossRef
37.
go back to reference Z.Q. Dong, and S. Yin, Structural, magnetic and magnetocaloric properties in perovskite RE2FeCoO6 (RE = Er and Gd) compounds. Ceram. Int. 46, 1099–1103 (2020).CrossRef Z.Q. Dong, and S. Yin, Structural, magnetic and magnetocaloric properties in perovskite RE2FeCoO6 (RE = Er and Gd) compounds. Ceram. Int. 46, 1099–1103 (2020).CrossRef
38.
go back to reference L. Li, P. Xu, S. Ye, Y. Li, G. Liu, D. Huo, and M. Yan, Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites. Acta Mater. 194, 354–365 (2020).CrossRef L. Li, P. Xu, S. Ye, Y. Li, G. Liu, D. Huo, and M. Yan, Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites. Acta Mater. 194, 354–365 (2020).CrossRef
39.
go back to reference Y.K. Zhang, J. Zhu, S. Li, Z.Q. Zhang, J. Wang, and Z.M. Ren, Magnetic properties and promising cryogenic magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Sci. China Mater. 65, 1345–1352 (2022).CrossRef Y.K. Zhang, J. Zhu, S. Li, Z.Q. Zhang, J. Wang, and Z.M. Ren, Magnetic properties and promising cryogenic magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Sci. China Mater. 65, 1345–1352 (2022).CrossRef
40.
go back to reference Y. Zhang, J. Zhu, S. Li, J. Wang, and Z.M. Ren, Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. J. Mater. Sci. Technol. 102, 66–71 (2022).CrossRef Y. Zhang, J. Zhu, S. Li, J. Wang, and Z.M. Ren, Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. J. Mater. Sci. Technol. 102, 66–71 (2022).CrossRef
41.
go back to reference Y.K. Zhang, S. Li, L. Hu, X.H. Wang, L. Li, and M. Yan, Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Mater. Today Phys. 27, 100786 (2022).CrossRef Y.K. Zhang, S. Li, L. Hu, X.H. Wang, L. Li, and M. Yan, Excellent magnetocaloric performance in the carbide compounds RE2Cr2C3 (RE = Er, Ho, and Dy) and their composites. Mater. Today Phys. 27, 100786 (2022).CrossRef
42.
go back to reference J. Rodriguez-Carvajal, FULLPROF: a Rietveld and pattern matching analysis program. Laboratoire Leon Brillouin CEA-CNRS, France (2007). J. Rodriguez-Carvajal, FULLPROF: a Rietveld and pattern matching analysis program. Laboratoire Leon Brillouin CEA-CNRS, France (2007).
43.
go back to reference B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964).CrossRef B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964).CrossRef
44.
go back to reference V. Franco, and A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010).CrossRef V. Franco, and A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials. Int. J. Refrig. 33, 465 (2010).CrossRef
45.
go back to reference L.D. Griffith, Y. Mudryk, J. Slaughter, and V.K. Pecharsky, Material-based figure of merit for caloric materials. J. Appl. Phys. 123, 034902 (2018).CrossRef L.D. Griffith, Y. Mudryk, J. Slaughter, and V.K. Pecharsky, Material-based figure of merit for caloric materials. J. Appl. Phys. 123, 034902 (2018).CrossRef
46.
go back to reference D. Guo, L.M.M. Ramírez, J.Y. Law, Y.K. Zhang, and V. Franco, Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho or Er) compounds. Sci. China Mater. 66, 249 (2023).CrossRef D. Guo, L.M.M. Ramírez, J.Y. Law, Y.K. Zhang, and V. Franco, Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho or Er) compounds. Sci. China Mater. 66, 249 (2023).CrossRef
47.
go back to reference X. Wang, Z. Ma, Z. Zhang, and Y. Zhang, Magnetic properties and cryogenic magneto-caloric effect in the antiferromagnetic REFe2Si2 (RE = Dy and Tb) compounds. Appl. Phys. A 128, 898 (2022).CrossRef X. Wang, Z. Ma, Z. Zhang, and Y. Zhang, Magnetic properties and cryogenic magneto-caloric effect in the antiferromagnetic REFe2Si2 (RE = Dy and Tb) compounds. Appl. Phys. A 128, 898 (2022).CrossRef
48.
go back to reference P. Xu, L. Hu, Z. Zhang, H. Wang, and L.W. Li, Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE = Gd, Dy, Ho, and Er) compounds. Acta Mater. 236, 118114 (2022).CrossRef P. Xu, L. Hu, Z. Zhang, H. Wang, and L.W. Li, Electronic structure, magnetic properties and magnetocaloric performance in rare earths (RE) based RE2BaZnO5 (RE = Gd, Dy, Ho, and Er) compounds. Acta Mater. 236, 118114 (2022).CrossRef
Metadata
Title
Magnetic Properties and Magnetocaloric Effect in Tb2FeCrO6 Double Perovskite Oxide
Authors
Silu Huang
Junli Lin
Yongyun Shu
Yikun Zhang
Publication date
14-03-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10993-2

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue