Skip to main content
Top
Published in:

20-11-2023

MC-GAT: Multi-Channel Graph Attention Networks for Capturing Diverse Information in Complex Graphs

Authors: Zhiyao La, Yurong Qian, Hongyong Leng, Tianyu Gu, Weijun Gong, Jiaying Chen

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graph attention networks (GAT), which have strong performance in tackling various analytical tasks on network data, have attracted wide attention. However, complex real-world networks have both edge topology and node features. GAT only relies on the topology of edges to extract network information, and the association between node features is underutilized, which may seriously hinder GAT’s expressive ability on some tasks. In addition, the attention mechanism can automatically assign different weights to different pieces of information, making it easier to express information with multiple aspects. Therefore, we propose semi-supervised multi-channel attention networks (MC-GAT), which simultaneously extract node features, topological structures, and their combination information. The MC-GAT model consists of two specific attention modules, one common attention module, and the attention mechanism. To create node embeddings containing various informational aspects, we use the attention mechanism to assign weights to each. Extensive testing on benchmark datasets has shown us to be at our best. The performance of the proposed model is demonstrated by the fact that MC-GAT achieves relative maximum improvements of 4.22% for accuracy (ACC) on BlogCatalog and 5.23% for macro F1-score (F1) on UAI2010. Experimental results on relevant datasets show that the method has satisfactory performance, and multi-channel graph attention can capture richer structural and feature information within linear time complexity. This work provides a new way of thinking about graph neural networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu Z, Fang Y, Liu C, et al. Relative and absolute location embedding for few-shot node classification on graph. Proceedings of the AAAI conference on artificial intelligence. 2021;35(5):4267–4275. Liu Z, Fang Y, Liu C, et al. Relative and absolute location embedding for few-shot node classification on graph. Proceedings of the AAAI conference on artificial intelligence. 2021;35(5):4267–4275.
2.
go back to reference Prakash SKA, Tucker CS. Node classification using kernel propagation in graph neural networks. Expert Syst Appl. 2021;174: 114655.CrossRef Prakash SKA, Tucker CS. Node classification using kernel propagation in graph neural networks. Expert Syst Appl. 2021;174: 114655.CrossRef
3.
go back to reference Smirnov V, Warnow T. MAGUS: multiple sequence alignment using graph clustering. Bioinformatics. 2021;37(12):1666–72.CrossRef Smirnov V, Warnow T. MAGUS: multiple sequence alignment using graph clustering. Bioinformatics. 2021;37(12):1666–72.CrossRef
4.
go back to reference Patel R, Guo Y, Alhudhaif A, et al. Graph-based link prediction between human phenotypes and genes. Math Probl Eng. 2021;2022. Patel R, Guo Y, Alhudhaif A, et al. Graph-based link prediction between human phenotypes and genes. Math Probl Eng. 2021;2022.
5.
go back to reference Fan W, Ma Y, Li Q, et al. Graph neural networks for social recommendation. The world wide web conference. 2019;417–426. Fan W, Ma Y, Li Q, et al. Graph neural networks for social recommendation. The world wide web conference. 2019;417–426.
6.
go back to reference Chami I, Ying Z, Ré C, et al. Hyperbolic graph convolutional neural networks. Adv Neural Inf Process Syst. 2019;32. Chami I, Ying Z, Ré C, et al. Hyperbolic graph convolutional neural networks. Adv Neural Inf Process Syst. 2019;32.
7.
go back to reference Li Q, Han Z, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the AAAI conference on artificial intelligence. 2018;32(1). Li Q, Han Z, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the AAAI conference on artificial intelligence. 2018;32(1).
8.
go back to reference Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks. International conference on machine learning. PMLR. 2019;6861–6871. Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks. International conference on machine learning. PMLR. 2019;6861–6871.
9.
go back to reference Wang X, Zhu M, Bo D, et al. Am-gcn: adaptive multi-channel graph convolutional networks. Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery & data mining. 2020;1243–1253. Wang X, Zhu M, Bo D, et al. Am-gcn: adaptive multi-channel graph convolutional networks. Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery & data mining. 2020;1243–1253.
10.
go back to reference Veličković P, Cucurull G, Casanova A, et al. Graph attention networks. arXiv preprint arXiv: 1710.10903. 2017. Veličković P, Cucurull G, Casanova A, et al. Graph attention networks. arXiv preprint arXiv: 1710.10903. 2017.
11.
go back to reference Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203. 2013. Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:​1312.​6203. 2013.
12.
go back to reference Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv Neural Inf Process Syst. 2016;29. Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv Neural Inf Process Syst. 2016;29.
13.
14.
go back to reference Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Adv Neural Inf Process Syst. 2017;30. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Adv Neural Inf Process Syst. 2017;30.
15.
go back to reference Wu J, He J, Xu J. Net: degree-specific graph neural networks for node and graph classification. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019;406–415. Wu J, He J, Xu J. Net: degree-specific graph neural networks for node and graph classification. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019;406–415.
16.
go back to reference Abu-El-Haija S, Perozzi B, Kapoor A, et al. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. International conference on machine learning. PMLR. 2019;21–29. Abu-El-Haija S, Perozzi B, Kapoor A, et al. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. International conference on machine learning. PMLR. 2019;21–29.
17.
go back to reference Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014;701–710. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014;701–710.
18.
go back to reference Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016;855–864. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016;855–864.
19.
go back to reference Perozzi B, Kulkarni V, Skiena S. Walklets: Multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:1605.02115. 2016;043238–23. Perozzi B, Kulkarni V, Skiena S. Walklets: Multiscale graph embeddings for interpretable network classification. arXiv preprint arXiv:​1605.​02115. 2016;043238–23.
20.
go back to reference Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding. Proceedings of the 24th international conference on world wide web. 2015;1067–1077. Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding. Proceedings of the 24th international conference on world wide web. 2015;1067–1077.
21.
go back to reference Song L, Smola A, Gretton A, et al. Supervised feature selection via dependence estimation. Proceedings of the 24th international conference on Machine learning. 2007;823–830. Song L, Smola A, Gretton A, et al. Supervised feature selection via dependence estimation. Proceedings of the 24th international conference on Machine learning. 2007;823–830.
22.
go back to reference Wang X, Ji H, Shi C, et al. Heterogeneous graph attention network. The world wide web conference. 2019;2022–2032. Wang X, Ji H, Shi C, et al. Heterogeneous graph attention network. The world wide web conference. 2019;2022–2032.
23.
go back to reference Wang W, Liu X, Jiao P, et al. A unified weakly supervised framework for community detection and semantic matching. Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III 22. Springer International Publishing, 2018;218-230. Wang W, Liu X, Jiao P, et al. A unified weakly supervised framework for community detection and semantic matching. Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III 22. Springer International Publishing, 2018;218-230.
24.
go back to reference Meng Z, Liang S, Bao H, et al. Co-embedding attributed networks. Proceedings of the twelfth ACM international conference on web search and data mining. 2019;393–401. Meng Z, Liang S, Bao H, et al. Co-embedding attributed networks. Proceedings of the twelfth ACM international conference on web search and data mining. 2019;393–401.
25.
go back to reference Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11). Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11).
Metadata
Title
MC-GAT: Multi-Channel Graph Attention Networks for Capturing Diverse Information in Complex Graphs
Authors
Zhiyao La
Yurong Qian
Hongyong Leng
Tianyu Gu
Weijun Gong
Jiaying Chen
Publication date
20-11-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10222-8

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner